交叉熵Loss多分类问题实战(手写数字)
1、import所需要的torch库和包
2、加载mnist手写数字数据集,划分训练集和测试集,转化数据格式,batch_size设置为200
3、定义三层线性网络参数w,b,设置求导信息
4、初始化参数,这一步比较关键,是否初始化影响到数据质量以及后续网络学习效果
5、自定义三层线性网络
6、选定优化器激活函数和loss函数
7、训练及测试,并记录每轮训练的loss变化和在测试集上的效果。第一轮就达到了98的准确度,判断是初始化效果较好,在前几次测试中根据初始化的情况不同,初始准确率为50%-85%不等
完整代码:
import torch
import torchvision
import torch.nn.functional as Ftrain_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data', train=True, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307, ), (0.3081, ))])),batch_size=200, shuffle=True)test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('mnist_data', train=False, download=True,transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307, ), (0.3081, ))])),batch_size=200, shuffle=True)w1 = torch.randn(200, 784, requires_grad=True)
b1 = torch.randn(200, requires_grad=True)
w2 = torch.randn(200, 200, requires_grad=True)
b2 = torch.randn(200, requires_grad=True)
w3 = torch.randn(10, 200, requires_grad=True)
b3 = torch.randn(10, requires_grad=True)torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)def forward(x):x = x@w1.t() +b1x = F.relu(x)x = x@w2.t() +b2x = F.relu(x)x = x@w3.t() +b3x = F.relu(x)return xoptimizer = torch.optim.Adam([w1, b1, w2, b2, w3, b3], lr=0.001)
criterion = torch.nn.CrossEntropyLoss()for epoch in range(10):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 28*28)logits = forward(data)loss = criterion(logits, target)optimizer.zero_grad()loss.backward()optimizer.step()if (batch_idx+1) % 150 == 0:print('Train Epoch:{} [{}/{}({:.0f}%)]\tLoss:{:.6f}'.format(epoch, (batch_idx+1) * len(data), len(train_loader.dataset),100. * (batch_idx+1) / len(train_loader), loss.item()))test_loss = 0correct = 0for data, target in test_loader:data = data.view(-1, 28*28)logits = forward(data)test_loss += criterion(logits, target).item()pred = logits.data.max(1)[1]correct += pred.eq(target.data).sum()test_loss /= len(test_loader)print('\nTest Set:Average Loss:{:.4f}, Accuracy:{}/{}({:.0f}%)\n'.format(test_loss, correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))
相关文章:

交叉熵Loss多分类问题实战(手写数字)
1、import所需要的torch库和包 2、加载mnist手写数字数据集,划分训练集和测试集,转化数据格式,batch_size设置为200 3、定义三层线性网络参数w,b,设置求导信息 4、初始化参数,这一步比较关键,…...

如何看待Unity新的收费模式?(InsCode AI 创作助手)
Unity引擎是目前全球最受欢迎的3D游戏和应用开发引擎之一,按照Unity公司自己的说法,全球1000款畅销移动游戏中70%以上都使用了Unity引擎。如果统计全平台(包括PC、主机和移动设备)的情况,非官方数据是,超过…...

Android Studio git 取消本地 commit(未Push)
操作比较简单 1.选中项目然后依次选择:Git->Repository->Reset HEAD 2.然后再to Commit中输入HEAD^,表示退回到上一个版本。...

ViewModifier/视图修饰符, ButtonStyle/按钮样式 的使用
1. ViewModifier 视图修饰符 1.1 创建默认按钮视图修饰符 ViewModifierBootcamp.swift import SwiftUI/// 默认按钮修饰符 struct DefaultButtonViewModifier: ViewModifier{let bcakgroundColor: Colorfunc body(content: Content) -> some View {content.foregroundColor…...

科技资讯|微软AR眼镜新专利曝光,可拆卸电池解决续航焦虑
微软正在深入研究增强现实(AR)领域,最近申请了一项“热插拔电池”相关专利。该专利于 2023 年 10 月 5 日发布,描述了采用模块化设计的 AR 眼镜,热插拔电池放置在了镜腿部分,可以直接拿下替换,对…...

idea系列---【上一次打开springboot项目还好好的,现在打开突然无法启动了】
问题 昨天走的时候项目还能正常启动,今天来了之后突然报下面的错误: Error:Kotlin: Module was compiled with an incompatible version of Kotlin. The binary version of its metadata is 1.7.1, expected version is 1.1.16. 解决方案 点击 idea: Bui…...

查询资源消耗
import subprocess def get_cpu_usage(pid, duration): output subprocess.check_output([‘pidstat’, ‘-d’, ‘-p’, str(pid), ‘1’, str(duration)]).decode(‘utf-8’) lines output.strip().split(’\n’) cpu_usage [] for line in lines[4:]: fields line.spli…...

conda: error: argument COMMAND: invalid choice: ‘activate‘
参考:https://github.com/conda/conda/issues/13022 输入后重启terminal即可...

新鲜速递:Spring Cloud Alibaba环境在Spring Boot 3时代的快速搭建
了解 首先,Spring Cloud Alibaba使用的是Nacos作为服务注册和服务发现的中间件。 能力在提供者那里,而消费者只需知道提供者提供哪些服务,而无需关心提供者在哪里,实际调用过程如下图 准备工作 1、需要下载并安装Nacos最新版…...

网络-网络状态网络速度
文章目录 前言一、网络状态二、网络速度 前言 本文主要记录如何监听网络状态和网络速度。 一、网络状态 获取当前网络状态: navigator.onLine // true:在线 false:离线监听事件:online(联网) 和 offline(断网) windo…...

ACL访问控制列表的解析和配置
ACL的解析 个人简介 ACL - Access Control List 访问控制列表 策略 ------行为 允许/拒绝 ACL --包含两种 标准ACL 扩展ACL 标准ACL:只能针对源IP地址做限制 针对路由条目的限制 -路由策略 思科编号:1-99之间或1300-1999 扩展ACL:针对…...

记一次使用vue-markdown在vue中解析markdown格式文件,并自动生成目录大纲
先上效果图 如图所示,在网页中,能直接解析markdown文档,并且生成目录大纲,也支持点击目录标题跳转到对应栏目中,下面就来讲讲是如何实现此功能的。 1、下载vue-markdown yarn add vue-markdown 2、在页面中渲染markdo…...

力扣每日一题35:搜索插入的位置
题目描述: 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5…...
Iptabels的相关描述理解防火墙的必读文章
Iptabels是与Linux内核集成的包过滤防火墙系统,几乎所有的linux发行版本都会包含Iptables的功能。如果 Linux 系统连接到因特网或 LAN、服务器或连接 LAN 和因特网的代理服务器, 则Iptables有利于在 Linux 系统上更好地控制 IP 信息包过滤和防火墙配置。…...

Maven 构建项目测试
在上一章节中我们学会了如何使用 Maven 创建 Java 应用。接下来我们要学习如何构建和测试这个项目。 进入 C:/MVN 文件夹下,打开 consumerBanking 文件夹。你将看到有一个 pom.xml 文件,代码如下: <project xmlns"http://maven.apa…...

机器学习 - 似然函数:概念、应用与代码实例
目录 一、概要二、什么是似然函数数学定义似然与概率的区别重要性举例 三、似然函数与概率密度函数似然函数(Likelihood Function)定义例子 概率密度函数(Probability Density Function, PDF)定义 区别与联系 四、最大似然估计&am…...

LeetCode 热题 100-49. 字母异位词分组
题目描述 给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs [“eat”, “tea”, “tan”, “ate”, “nat”, “bat”] 输出: [[“bat”],[“n…...

TensorFlow入门(十九、softmax算法处理分类问题)
softmax是什么? Sigmoid、Tanh、ReLU等激活函数,输出值只有两种(0、1,或-1、1或0、x),而实际现实生活中往往需要对某一问题进行多种分类。例如之前识别图片中模糊手写数字的例子,这个时候就需要使用softmax算法。 softmax的算法逻辑 如果判断输入属于某一个类的概率大于属于其…...

刷题用到的非常有用的函数c++(持续更新)
阅读导航 字符串处理类一、stoi()(将字符串转换为整数类型)二、to_string()(将整数类型转换为字符串类型)三、stringstream函数(将一个字符串按照指定的分隔符进行分词) 字符串处理类 一、stoi()ÿ…...

黑客技术(网络安全)——自学思路
如果你想自学网络安全,首先你必须了解什么是网络安全!,什么是黑客!! 1.无论网络、Web、移动、桌面、云等哪个领域,都有攻与防两面性,例如 Web 安全技术,既有 Web 渗透2.也有 Web 防…...

lNmp安装:
一、LNMP LNMP架构是目前成熟的企业网站应用模式之一,指的是协同工作的一整套系统和相关软件, 能够提供动态Web站点服务及其应用开发环境。LNMP是一个缩写词,具体包括Linux操作系统、nginx网站服务器、MySQL数据库服务器、 PHP(或…...

Fisher辨别分析
问题要求 在UCI数据集上的Iris和Sonar数据上验证算法的有效性。训练和测试样本有三种方式(三选一)进行划分: (一) 将数据随机分训练和测试,多次平均求结果 (二)K折交叉验证 &…...

【Zookeeper专题】Zookeeper选举Leader源码解析
目录 前言阅读建议课程内容一、ZK Leader选举流程回顾二、源码流程图三、Leader选举模型图 学习总结 前言 为什么要看源码?说实在博主之前看Spring源码之前没想过这个问题。因为我在看之前就曾听闻大佬们说过【JavaCoder三板斧:Java,Mysql&a…...

机器学习之自训练协同训练
前言 监督学习往往需要大量的标注数据, 而标注数据的成本比较高 . 因此 , 利用大量的无标注数据来提高监督学习的效果有着十分重要的意义. 这种利用少量标注数据和大量无标注数据进行学习的方式称为 半监督学习 ( Semi…...

ubuntu 通过apt-get快速安装 docker
在使用 apt-get 安装 Docker 之前,你需要确保你的系统已经准备好并且已经更新了软件包列表。以下是在 Ubuntu 系统上使用 apt-get 安装 Docker 的步骤: 更新软件包列表: sudo apt-get update 安装依赖软件包,以确保可以通过 HTTPS 使用存储库: sudo apt-get install apt-t…...

C++医院影像科PACS源码:三维重建、检查预约、胶片打印、图像处理、测量分析等
PACS连接DICOM接口的医疗器械(如CT、MRI、CR、DR、DSA、各种窥镜成像系统设备等),实现图像无损传输,实现DICOM胶片打印机回传打印功能,支持各种图像处理,可以进行窗技术调节,与登记台管理系统共…...

企业聊天应用程序使用 Kubernetes
1. 客户端-服务器工作流程 客户端:在我们的架构中,客户端可以分为三种类型:iOS 和 Android 移动应用程序以及 Web 聊天。移动应用程序首先通过 API 网关服务与服务器进行通信,其中客户端会生成一个访问令牌,该令牌将授…...

记录用命令行将项目打包成war包
记录用命令行将项目打包成war包 找到项目的pom.xml 在当前路径下进入cmd 输入命令 mvn clean package 发现报错了 Failed to execute goal org.apache.maven.plugins:maven-war-plugin:2.2:war (default-war) on project MMS: Error assembling WAR: webxml attribute is req…...

Linux基础知识笔记
Linux基础知识笔记 介绍/dev/null作用2>&1作用 介绍 记录linux基础知识,持续更新中… /dev/null作用 /dev/null 是一个特殊的设备文件,可以将数据重定向到这个文件中,从而实现将输出或错误信息丢弃的效果。在 Linux 系统中…...

Laya3.0 入门教程
点击play箭头 点击右边的开发者工具 就会弹出 chrome的调试窗口 然后定位到你自己的ts文件 直接在ts里断点即可 不需要js文件 如何自动生成代码? 比如你打开一个新项目 里面显示的是当前场景 只需要点击 UI运行时 右边的框就可以了 他会自动弹窗提示你 创建一个文…...