ExcelBDD Python指南
在Python里面支持BDD
Excel BDD Tool Specification By ExcelBDD Method
This tool is to get BDD test data from an excel file, its requirement specification is below
The Essential of this approach is obtaining multiple sets of test data, so when combined with Excel's Sheet, the key parameters are:
- ExcelFileName, required, which excel file is used.
- SheetName, optional, which Sheet the requirement writer writes in, if not specified, 1st sheet is chosen. An Excel file supports multiple Sheets, so an Excel is sufficient to support a wide range, such as Epic, Release, or a module.
- HeaderMatcher, filter the header row by this matcher, if matched, this set will be collected in.
- HeaderUnmatcher, filter the header row by this matcher, if matched, this set will be excluded.
Once the header row and parameter name column are determined by 'Parameter Name' grid automatically, the data area is determined, such as the green area in the table above. The gray area of the table above is the story step description, which is the general requirements step.
Install ExcelBDD Python Edition
pip install excelbdd
API
behavior.get_example_list
get_example_list(excelFile, sheetName = None, headerMatcher = None, headerUnmatcher = None)
- excelFile: excel file path and name, relative or absolute
- sheetName: sheet name, optional, default is the first sheet in excel file
- HeaderMatcher: filter the header row by this matcher, if matched, this set will be collected in. optional, default is to select all.
- HeaderUnmatcher: filter the header row by this matcher, if matched, this set will be excluded. optional, default is to exclude none.
behavior.get_example_table
get_example_table(excelFile,sheetName = None,headerRow = 1,startColumn = 'A')
- excelFile: excel file path and name, relative or absolute
- sheetName: sheet name, optional, default is the first sheet in excel file
- headerRow: the number of header row, optional, default is 1
- startColumn: the char of first data area, optional, default is column A in sheet
Simple example code
The Famouse FizzBuzz kata is described in excelbdd format, as below.
import pytest
from excelbdd.behavior import get_example_list
import FizzBuzzexcelBDDFile = "path of excel file"
@pytest.mark.parametrize("HeaderName, Number1, Output1, Number2, Output2, Number3, Output3, Number4, Output4",get_example_list(excelBDDFile,"FizzBuzz"))
def test_FizzBuzz(HeaderName, Number1, Output1, Number2, Output2, Number3, Output3, Number4, Output4):assert FizzBuzz.handle(Number1) == Output1assert FizzBuzz.handle(Number2) == Output2assert FizzBuzz.handle(Number3) == Output3assert FizzBuzz.handle(Number4) == Output4
Input vs Expect + Test Result Format - SBT - Specification By Testcase
testcase example is below, which uses headerMatcher to filter the data
@pytest.mark.parametrize("HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, \ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, \ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, \ParamName4TestResult",get_example_list(bddFile1, "SBTSheet1","Scenario"))
def test_excelbdd_sbt(HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, ParamName4TestResult):print(HeaderName, ParamName1, ParamName1Expected, ParamName1TestResult, ParamName2, ParamName2Expected, ParamName2TestResult, ParamName3, ParamName3Expected, ParamName3TestResult, ParamName4, ParamName4Expected, ParamName4TestResult)# add test data are loaded into the above parameters, add test code below
ExcelBDD can detect 3 parameter-header patterns automatically, the last one is below.
Input vs Expected
The demo code is below
@pytest.mark.parametrize("HeaderName, ParamName1, ParamName1Expected, \ParamName2, ParamName2Expected, ParamName3, \ParamName3Expected, ParamName4, ParamName4Expected"get_example_list(bddFile1, "SBTSheet1","Scenario"))
def test_excelbdd_sbt(HeaderName, ParamName1, ParamName1Expected, ParamName2, ParamName2Expected, ParamName3, ParamName3Expected, ParamName4, ParamName4Expected):print(HeaderName, ParamName1, ParamName1Expected, ParamName2, ParamName2Expected, ParamName3, ParamName3Expected, ParamName4, ParamName4Expected)# add test data are loaded into the above parameters, add test code below
Get Table
The test data are organized in normal table, as below.
the below code show how to fetch the test data into testcase
from excelbdd.behavior import get_example_table@pytest.mark.parametrize("Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08",get_example_table(tableFile, "DataTable4"))
def test_get_example_tableB(Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08):print(Header01, Header02, Header03, Header04, Header05, Header06, Header07, Header08) # add test data are loaded into the above parameters, add test code below
ExcelBDD Python指南线上版维护在ExcelBDD Python Guideline
ExcelBDD开源项目位于 ExcelBDD Homepagehttps://dev.azure.com/simplopen/ExcelBDD
相关文章:

ExcelBDD Python指南
在Python里面支持BDD Excel BDD Tool Specification By ExcelBDD Method This tool is to get BDD test data from an excel file, its requirement specification is below The Essential of this approach is obtaining multiple sets of test data, so when combined with…...

基于深度学习的驾驶员疲劳监测系统的设计与实现
点击以下链接获取源码: https://download.csdn.net/download/qq_64505944/88421622?spm1001.2014.3001.5503 基于深度学习的驾驶员疲劳监测系统的设计与实现 1 绪论 在21世纪,各国的经济飞速发展,人民越来越富裕,道路上的汽车也逐…...

B树、B+树详解
B树 前言 首先,为什么要总结B树、B树的知识呢?最近在学习数据库索引调优相关知识,数据库系统普遍采用B-/Tree作为索引结构(例如mysql的InnoDB引擎使用的B树),理解不透彻B树,则无法理解数据…...

使用hugging face开源库accelerate进行多GPU(单机多卡)训练卡死问题
目录 问题描述及配置网上资料查找1.tqdm问题2.dataloader问题3.model(input)写法问题4.环境变量问题 我的卡死问题解决方法 问题描述及配置 在使用hugging face开源库accelerate进行多GPU训练(单机多卡)的时候,经常出现如下报错 [E Process…...

IDEA 修改插件安装位置
不说假话,一定要看到最后,不然你以为我为什么要自己总结!!! IDEA 修改插件安装位置 前言步骤 前言 IDEA 默认的配置文件均安装在C盘,使用时间长会生成很多文件,这些文件会占用挤兑C盘空间&…...

牛客网SQL160
国庆期间每类视频点赞量和转发量_牛客题霸_牛客网 select * from ( select tag,dt, sum(单日点赞量)over(partition by tag order by dt rows between 6 preceding and 0 following), max(单日转发量)over(partition by tag order by dt rows between 6 preceding and 0 follo…...

HDFS Java API 操作
文章目录 HDFS Java API操作零、启动hadoop一、HDFS常见类接口与方法1、hdfs 常见类与接口2、FileSystem 的常用方法 二、Java 创建Hadoop项目1、创建文件夹2、打开Java IDEA1) 新建项目2) 选择Maven 三、配置环境1、添加相关依赖2、创建日志属性文件 四、Java API操作1、在HDF…...

论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】
文章目录 论文阅读之【Is GPT-4 a Good Data Analyst?(GPT-4是否是一位好的数据分析师)】背景:数据分析师工作范围基于GPT-4的端到端数据分析框架将GPT-4作为数据分析师的框架的流程图 实验分析评估指标表1:GPT-4性能表现表2&…...

【数据结构】:二叉树与堆排序的实现
1.树概念及结构(了解) 1.1树的概念 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的有一个特殊的结点&#…...

纯css手写switch
CSS 手写switch 纯css手写switchcss变量 纯css手写switch 思路: switch需要的元素有:开关背景、开关按钮。点击按钮后,背景色变化,按钮颜色变化,呈现开关打开状态。 利用typecheckbox,来实现switch效果(修…...

PyTorch 深度学习之处理多维特征的输入Multiple Dimension Input(六)
1.Multiple Dimension Logistic Regression Model 1.1 Mini-Batch (N samples) 8D->1D 8D->2D 8D->6D 1.2 Neural Network 学习能力太好也不行(学习到的是数据集中的噪声),最好的是要泛化能力,超参数尝试 Example, Arti…...

LeetCode【438】找到字符串中所有字母异位词
题目: 注意:下面代码勉强通过,每次都对窗口内字符排序。然后比较字符串。 代码: public List<Integer> findAnagrams(String s, String p) {int start 0, end p.length() - 1;List<Integer> result new ArrayL…...

关于LEFT JOIN的一次理解
先看一段例子: SELECTproduct_half_spu.id AS halfSpuId,product_half_spu.half_spu_code,product_half_spu.half_spu_name,COUNT( product_sku.id ) AS skuCount,product_half_spu.create_on,product_half_spu.create_by,product_half_spu.upload_pic_date,produc…...

各报文段格式集合
数据链路层-- MAC帧 前导码8B:数据链路层将封装好的MAC帧交付给物理层进行发送,物理层在发送MAC帧前,还要在前面添加8字节的前导码(分为7字节的前同步码1字节的帧开始定界符)MAC地址长度6B数据长度46~1500B…...

【算法-动态规划】最长公共子序列
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…...

区块链游戏的开发流程
链游(Blockchain Games)的开发流程与传统游戏开发有许多相似之处,但它涉及到区块链技术的集成和智能合约的开发。以下是链游的一般开发流程,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司&…...

目标检测网络系列——YOLO V2
文章目录 YOLO9000better,更准batch Normalization高分辨率的训练使用anchor锚框尺寸的选择——聚类锚框集成改进——直接预测bounding box细粒度的特征图——passthrough layer多尺度训练数据集比对实验VOC 2007VOC 2012COCOFaster,更快网络模型——Darknet19训练方法Strong…...

15. Java反射和注解
Java —— 反射和注解 1. 反射2. 注解 1. 反射 动态语言:变量的类型和属性可以在运行时动态确定,而不需要在编译时指定 常见动态语言:Python,JavaScript,Ruby,PHP,Perl;常见静态语言…...

pdf处理工具 Enfocus PitStop Pro 2022 中文 for mac
Enfocus PitStop Pro 2022是一款专业的PDF预检和编辑软件,旨在帮助用户提高生产效率、确保印刷品质量并减少错误。以下是该软件的一些特色功能: PDF预检。PitStop Pro可以自动检测和修复常见的PDF文件问题,如缺失字体、图像分辨率低、颜色空…...

微信小程序入门开发教程
🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《微信小程序开发实战》。🎯Ἲ…...

php函数
1. strstr() 返回a在b中的第一个位置 2.substr() 截取字符串 3.PHP字符串函数parse_str(将字符串解析成多个变量)-CSDN博客 4.explode() 字符串分割为数组 5.trim() 1.去除字符串两边的 空白字符 2.去除指定字符 6.extract()函数从数组里…...

3.3 封装性
思维导图: 3.3.1 为什么要封装 ### 3.3.1 为什么要封装 **封装**,在Java的面向对象编程中,是一个核心的思想。它主要是为了保护对象的状态不被外部随意修改,确保数据的完整性和安全性。 #### **核心思想:** - 保护…...

Redis魔法:点燃分布式锁的奇妙实现
分布式锁是一种用于在分布式系统中控制对共享资源的访问的锁。它与传统的单机锁不同,因为它需要在多个节点之间协调以确保互斥访问。 本文将介绍什么是分布式锁,以及使用Redis实现分布式锁的几种方案。 一、前言 了解分布式锁之前,需要先了…...

iOS 项目避坑:多个分类中方法重复实现检测
#前言 在项目中,我们经常会使用分类 -> category。category在实际项目中一般有两个左右:1.给已有class增加方法,扩充起能力、2.将代码打散到多个文件中,避免因为一个类过于复杂而导致代码篇幅过长(应用于viewController中很好用) 但是 category 也有很多弊端~ **首…...

【003】EIS数据分析_#LIB
EIS数据分析 1. EIS测试及数据获取2. EIS数据分析2.1 EIS曲线划分 1. EIS测试及数据获取 点击查看往期介绍 2. EIS数据分析 2.1 EIS曲线划分 一般来说,实轴处的截获表示体电阻(Rb),它反映了电解质,隔膜和电极的电导率。高频区的半圆对应于…...

Sprint framework Day07:注解结合 xml 配置
前言 Spring注解结合XML配置是指在Spring应用中,使用注解和XML配置的方式来进行Bean的定义、依赖注入和其他配置。这种方式可以充分利用Spring框架的注解和XML配置两种不同的配置方式的特点。 在Spring框架中,我们可以使用注解来定义Bean,如…...

LiveGBS流媒体平台GB/T28181功能-国标流媒体服务同时兼容内网收流外网收流多网段设备收流
LiveGBS流媒体平台GB/T28181功能-国标流媒体服务同时兼容内网收流外网收流多网段设备收流 1、背景2、设备接入播放2.1、查看通道2.2、直播播放 3、默认收流地址配置4、其它网络设备收流配置5、搭建GB28181视频直播平台 1、背景 服务器部署的时候,可能有多个网卡多个…...

js题解(四)
文章目录 批量改变对象的属性判断是否包含数字判断是否符合指定格式 批量改变对象的属性 给定一个构造函数 constructor,请完成 alterObjects 方法,将 constructor 的所有实例的 greeting 属性指向给定的 greeting 变量。 function alterObjects(const…...

如何进行大数运算和高精度计算?
大数运算和高精度计算是在计算机编程中常见的需求,尤其是当处理大整数、分数、复数、浮点数等需要更多位数的数据时。在C语言中,由于原生的数据类型有限,您需要使用自定义的数据结构和算法来执行大数运算和高精度计算。在本文中,我…...

身份证读卡器跟OCR有何区别?哪个好?
二代身份证读卡器(以下简称读卡器)和OCR(光学字符识别)是两种常见的身份证信息获取技术,它们在原理、功能和应用方面存在一些区别。下面将详细介绍二者的区别并探讨哪个更好。 1. 原理: - 读卡器ÿ…...