车辆车型识别系统python+TensorFlow+Django网页界面+算法模型
一、介绍
车辆车型识别系统。本系统使用Python作为主要开发编程语言,通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练,最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上传一张车辆车型图片识别其名称。
二、系统效果图片



三、演示视频 and 代码 and 介绍
视频+代码+介绍:https://www.yuque.com/ziwu/yygu3z/sem38n5ssorbg8g7
四、TensorFlow进行图像识别分类介绍
随着深度学习的快速发展,图像分类识别已成为AI领域的核心技术之一。TensorFlow,由Google Brain团队开发的开源机器学习框架,为开发者提供了一个方便、高效的工具来构建和部署图像分类模型。
图像分类的目标是给定一个图像,将其分配到预定义的类别之一。例如,给定一个狗的图像,模型应该能够识别出它是狗,而不是猫或其他动物。
使用TensorFlow进行图像分类
以下是使用TensorFlow进行图像分类的基本步骤:
- 数据准备:首先,你需要一个图像数据集,例如CIFAR-10或ImageNet。使用tf.data API可以帮助您高效地加载和预处理数据。
- 模型构建:TensorFlow提供了Keras API,允许开发者以简洁的方式定义模型。对于图像分类,经常使用的模型有Convolutional Neural Networks (CNN)。
- 模型训练:一旦模型被定义,你可以使用model.fit()方法来训练模型。TensorFlow还提供了许多优化器和损失函数,使得模型训练变得容易。
- 评估和预测:使用model.evaluate()和model.predict()方法,可以评估模型在测试数据上的性能,并为新图像提供预测。
以下是一个使用TensorFlow进行图像分类的简单示例,基于CIFAR-10数据集:
import tensorflow as tf
from tensorflow.keras import layers, models, datasets# 1. 数据加载和预处理
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 归一化图像数据到0-1之间
train_images, test_images = train_images / 255.0, test_images / 255.0# 2. 创建模型
model = models.Sequential([layers.Conv2D(32, (3,3), activation='relu', input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3,3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3,3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10)
])# 3. 编译模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 4. 训练模型
history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 5. 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f"\nTest accuracy: {test_acc}")# 6. 进行预测
probability_model = tf.keras.Sequential([model, layers.Softmax()])
predictions = probability_model.predict(test_images)
predicted_label = tf.argmax(predictions, axis=1)
print(predicted_label[:5]) # 打印前5个预测的标签
此示例首先加载了CIFAR-10数据集,然后定义、编译、训练和评估了一个简单的CNN模型。最后,我们为测试数据集上的图像提供预测。
相关文章:
车辆车型识别系统python+TensorFlow+Django网页界面+算法模型
一、介绍 车辆车型识别系统。本系统使用Python作为主要开发编程语言,通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练,最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上…...
小程序如何设置各种时间参数
在小程序管理员后台->基本设置处,可以设置各种时间。例如待支付提醒时间、待支付取消时间、自动发货时间、自动收货时间、自动评价时间等等。下面具体解释一下各个时间的意思。 1. 待支付提醒时间:在用户下单后,如果一段时间内没有完成支付…...
CSS变量 var()的用法
写在前面 这里介绍一下开发中常用的css变量var(),它可以实现样式的动态设置,使用方法主要分为全局使用和局部使用两种。 如何定义CSS变量var() 在CSS文件中,变量需要使用 – 作为前缀来定义,后面跟上变量名和值,如&a…...
设计模式——21. 中介者模式
1. 说明 中介者模式(Mediator Pattern)是一种行为设计模式,它允许对象之间通过一个中介者对象进行通信,而不是直接相互引用。这种模式有助于减少对象之间的直接关联,从而提高系统的可维护性和松耦合性。中介者模式将对象之间的交互集中在一个中介者对象中,该对象负责协调…...
fastjson 1.2.47 远程命令执行漏洞
fastjson 1.2.47 远程命令执行漏洞 文章目录 fastjson 1.2.47 远程命令执行漏洞1 在线漏洞解读:2 环境搭建3 影响版本:4 漏洞复现4.1 访问页面4.2 bp抓包,修改参数 5 使用插件检测漏洞【FastjsonScan】5.1使用説明5.2 使用方法5.2.1 右键菜单中ÿ…...
【k8s 开发排错】k8s组件开发排错之pprof
参考 Kubernetes组件问题排查的一些方法 - 知乎 go 程序性能调优 pprof 的使用 (一) - 润新知 Go进阶系列 之 性能分析神器pprof__好吗_好的的博客-CSDN博客 k8s各组件端口_k8s10259端口-CSDN博客 Go调试神器pprof使用教程【实战分享】_NPE~的博客-C…...
记录一次典型oom的处理过程
背景 有同学反馈收到应用RT的报警,其中的流量都来自于网关集群中的一台机器。因为负责网关,就上去看了下并进行排查。整体是一个比较明显的oom,这里只是记录下排查过程,老司机可以略过了。 初步现象 常规步骤,使用t…...
centos离线安装telnet、traceroute工具
安装包下载地址 安装包下载地址在这里 直接输入包名,筛选系统,根据自己系统版本确定该下哪个包 centos离线安装telnet 准备三个安装包 xinetd-2.3.15-14.el7.x86_64.rpmtelnet-server-0.17-65.el7_8.x86_64.rpmtelnet-0.17-65.el7_8.x86_64.rpm 三个…...
【java学习—七】对象的实例化过程(33)
文章目录 1. 简单类对象的实例化过程2. 子类对象的实例化过程 1. 简单类对象的实例化过程 2. 子类对象的实例化过程...
P4451 [国家集训队] 整数的lqp拆分
传送门:洛谷 解题思路: 考虑设 f ( i ) f(i) f(i)为和为 i i i的拆分权值和,那么我们可以得到一个递推关系式 f ( i ) ∑ i 1 n f ( n − i ) ∗ f i b ( i ) f(i)\sum_{i1}^nf(n-i)*fib(i) f(i)i1∑nf(n−i)∗fib(i)这个表达式的含义就是枚举一个数的值,由于分配率,我们…...
Mysql 日常命令记录
索引操作 加联合组件: ALTER TABLE dws_stock_age_material_transactions_total_pri_rpt_update ADD INDEX index_sio (organization_id(16),item_code,subinventory_code); 查看索引: SHOW INDEX FROM dws_stock_age_material_transactions_detail_…...
可视化上证50结构图
可视化上证50结构图 缘由收集数据先获取50支成分股列表获取各成分股票K线数据 数据处理找出来,再删除,然后重新下载数据最终获得每日报价的变化值 图形结构处理聚类分析使用affinity_propagation(亲和传播)聚类 嵌入二维平面空间可视化小结热力图 缘由 …...
STM32_PID通用算法增量式和位置式
STM32_PID通用算法增量式和位置式 前言: 此算法为入门级PID算法,调试好参数后可应用于温度控制、舵机控制、直流电机的转速控制和直流电机的角度控制等等,下面就以温度控制举例 pid.c #include "pid.h" #include "sensor.h&q…...
Spark的数据输入、数据计算、数据输出
PySpark的编程,主要氛围三大步骤:1)数据输入、2)数据处理计算、3)数据输出 1)数据输入:通过SparkContext对象,晚上数据输入 2)数据处理计算:输入数据后得到RDD对象,对RDD…...
Windows端口号被占用的查看方法及解决办法
Windows端口号被占用的查看方法及解决办法 Error starting ApplicationContext. To display the conditions report re-run your application with debug enabled. 2023-10-14 22:58:32.069 ERROR 6488 --- [ main] o.s.b.d.LoggingFailureAnalysisReporter : ***…...
Web3 整理React项目 导入Web3 并获取区块链信息
上文 WEB3 创建React前端Dapp环境并整合solidity项目,融合项目结构便捷前端拿取合约 Abi 我们用react 创建了一个 dapp 项目 并将前后端代码做了个整合 那么 我们就来好好整理一下 我们的前端react的项目结构 我们在 src 目录下创建一个 components 用来存放我们的…...
基于SpringBoot的旅游网站开题报告
一、选题背景 随着旅游业的蓬勃发展和人们对旅游需求的增长,开发一个基于Spring Boot的旅游网站具有重要的意义。传统的旅行社模式逐渐不能满足人们个性化、多样化的旅游需求,因此开发一个在线旅游网站能够为用户提供更加便捷、灵活、个性化的旅游服务&…...
基于SSM的班级事务管理系统
基于SSM的班级事务管理系统 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatisVue工具:IDEA/Ecilpse、Navicat、Maven 系统展示 前台界面 登录界面 班委界面 学生界面 管理员界面 摘要 基于SSM(Spring、Spring…...
基于Spring Boot开发的汽车租赁管理系统
文章目录 项目介绍主要功能截图:后台前台部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Spring Boot开发的汽车租赁…...
精品基于django的高校竞赛比赛管理系统Python
《[含文档PPT源码等]精品基于django的高校竞赛管理系统》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等! 软件开发环境及开发工具: 开发语言:python 使用框架:Django 前端技术:JavaScri…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...
