当前位置: 首页 > news >正文

车辆车型识别系统python+TensorFlow+Django网页界面+算法模型

一、介绍

车辆车型识别系统。本系统使用Python作为主要开发编程语言,通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练,最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上传一张车辆车型图片识别其名称。

二、系统效果图片

img_10_15_17_10_12.jpg
img_10_15_17_10_26.jpg
img_10_15_17_10_33.jpg

三、演示视频 and 代码 and 介绍

视频+代码+介绍:https://www.yuque.com/ziwu/yygu3z/sem38n5ssorbg8g7

四、TensorFlow进行图像识别分类介绍

随着深度学习的快速发展,图像分类识别已成为AI领域的核心技术之一。TensorFlow,由Google Brain团队开发的开源机器学习框架,为开发者提供了一个方便、高效的工具来构建和部署图像分类模型。
图像分类的目标是给定一个图像,将其分配到预定义的类别之一。例如,给定一个狗的图像,模型应该能够识别出它是狗,而不是猫或其他动物。
使用TensorFlow进行图像分类
以下是使用TensorFlow进行图像分类的基本步骤:

  • 数据准备:首先,你需要一个图像数据集,例如CIFAR-10或ImageNet。使用tf.data API可以帮助您高效地加载和预处理数据。
  • 模型构建:TensorFlow提供了Keras API,允许开发者以简洁的方式定义模型。对于图像分类,经常使用的模型有Convolutional Neural Networks (CNN)。
  • 模型训练:一旦模型被定义,你可以使用model.fit()方法来训练模型。TensorFlow还提供了许多优化器和损失函数,使得模型训练变得容易。
  • 评估和预测:使用model.evaluate()和model.predict()方法,可以评估模型在测试数据上的性能,并为新图像提供预测。

以下是一个使用TensorFlow进行图像分类的简单示例,基于CIFAR-10数据集:

import tensorflow as tf
from tensorflow.keras import layers, models, datasets# 1. 数据加载和预处理
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 归一化图像数据到0-1之间
train_images, test_images = train_images / 255.0, test_images / 255.0# 2. 创建模型
model = models.Sequential([layers.Conv2D(32, (3,3), activation='relu', input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3,3), activation='relu'),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3,3), activation='relu'),layers.Flatten(),layers.Dense(64, activation='relu'),layers.Dense(10)
])# 3. 编译模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])# 4. 训练模型
history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))# 5. 评估模型
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print(f"\nTest accuracy: {test_acc}")# 6. 进行预测
probability_model = tf.keras.Sequential([model, layers.Softmax()])
predictions = probability_model.predict(test_images)
predicted_label = tf.argmax(predictions, axis=1)
print(predicted_label[:5])  # 打印前5个预测的标签

此示例首先加载了CIFAR-10数据集,然后定义、编译、训练和评估了一个简单的CNN模型。最后,我们为测试数据集上的图像提供预测。

相关文章:

车辆车型识别系统python+TensorFlow+Django网页界面+算法模型

一、介绍 车辆车型识别系统。本系统使用Python作为主要开发编程语言,通过TensorFlow搭建算法模型网络对收集到的多种车辆车型图片数据集进行训练,最后得到一个识别精度较高的模型文件。并基于该模型搭建Django框架的WEB网页端可视化操作界面。实现用户上…...

小程序如何设置各种时间参数

在小程序管理员后台->基本设置处,可以设置各种时间。例如待支付提醒时间、待支付取消时间、自动发货时间、自动收货时间、自动评价时间等等。下面具体解释一下各个时间的意思。 1. 待支付提醒时间:在用户下单后,如果一段时间内没有完成支付…...

CSS变量 var()的用法

写在前面 这里介绍一下开发中常用的css变量var(),它可以实现样式的动态设置,使用方法主要分为全局使用和局部使用两种。 如何定义CSS变量var() 在CSS文件中,变量需要使用 – 作为前缀来定义,后面跟上变量名和值,如&a…...

设计模式——21. 中介者模式

1. 说明 中介者模式(Mediator Pattern)是一种行为设计模式,它允许对象之间通过一个中介者对象进行通信,而不是直接相互引用。这种模式有助于减少对象之间的直接关联,从而提高系统的可维护性和松耦合性。中介者模式将对象之间的交互集中在一个中介者对象中,该对象负责协调…...

fastjson 1.2.47 远程命令执行漏洞

fastjson 1.2.47 远程命令执行漏洞 文章目录 fastjson 1.2.47 远程命令执行漏洞1 在线漏洞解读:2 环境搭建3 影响版本:4 漏洞复现4.1 访问页面4.2 bp抓包,修改参数 5 使用插件检测漏洞【FastjsonScan】5.1使用説明5.2 使用方法5.2.1 右键菜单中&#xff…...

【k8s 开发排错】k8s组件开发排错之pprof

参考 Kubernetes组件问题排查的一些方法 - 知乎 go 程序性能调优 pprof 的使用 (一) - 润新知 Go进阶系列 之 性能分析神器pprof__好吗_好的的博客-CSDN博客 k8s各组件端口_k8s10259端口-CSDN博客 Go调试神器pprof使用教程【实战分享】_NPE~的博客-C…...

记录一次典型oom的处理过程

背景 有同学反馈收到应用RT的报警,其中的流量都来自于网关集群中的一台机器。因为负责网关,就上去看了下并进行排查。整体是一个比较明显的oom,这里只是记录下排查过程,老司机可以略过了。 初步现象 常规步骤,使用t…...

centos离线安装telnet、traceroute工具

安装包下载地址 安装包下载地址在这里 直接输入包名,筛选系统,根据自己系统版本确定该下哪个包 centos离线安装telnet 准备三个安装包 xinetd-2.3.15-14.el7.x86_64.rpmtelnet-server-0.17-65.el7_8.x86_64.rpmtelnet-0.17-65.el7_8.x86_64.rpm 三个…...

【java学习—七】对象的实例化过程(33)

文章目录 1. 简单类对象的实例化过程2. 子类对象的实例化过程 1. 简单类对象的实例化过程 2. 子类对象的实例化过程...

P4451 [国家集训队] 整数的lqp拆分

传送门:洛谷 解题思路: 考虑设 f ( i ) f(i) f(i)为和为 i i i的拆分权值和,那么我们可以得到一个递推关系式 f ( i ) ∑ i 1 n f ( n − i ) ∗ f i b ( i ) f(i)\sum_{i1}^nf(n-i)*fib(i) f(i)i1∑n​f(n−i)∗fib(i)这个表达式的含义就是枚举一个数的值,由于分配率,我们…...

Mysql 日常命令记录

索引操作 加联合组件: ALTER TABLE dws_stock_age_material_transactions_total_pri_rpt_update ADD INDEX index_sio (organization_id(16),item_code,subinventory_code); 查看索引: SHOW INDEX FROM dws_stock_age_material_transactions_detail_…...

可视化上证50结构图

可视化上证50结构图 缘由收集数据先获取50支成分股列表获取各成分股票K线数据 数据处理找出来,再删除,然后重新下载数据最终获得每日报价的变化值 图形结构处理聚类分析使用affinity_propagation(亲和传播)聚类 嵌入二维平面空间可视化小结热力图 缘由 …...

STM32_PID通用算法增量式和位置式

STM32_PID通用算法增量式和位置式 前言: 此算法为入门级PID算法,调试好参数后可应用于温度控制、舵机控制、直流电机的转速控制和直流电机的角度控制等等,下面就以温度控制举例 pid.c #include "pid.h" #include "sensor.h&q…...

Spark的数据输入、数据计算、数据输出

PySpark的编程,主要氛围三大步骤:1)数据输入、2)数据处理计算、3)数据输出 1)数据输入:通过SparkContext对象,晚上数据输入 2)数据处理计算:输入数据后得到RDD对象,对RDD…...

Windows端口号被占用的查看方法及解决办法

Windows端口号被占用的查看方法及解决办法 Error starting ApplicationContext. To display the conditions report re-run your application with debug enabled. 2023-10-14 22:58:32.069 ERROR 6488 --- [ main] o.s.b.d.LoggingFailureAnalysisReporter : ***…...

Web3 整理React项目 导入Web3 并获取区块链信息

上文 WEB3 创建React前端Dapp环境并整合solidity项目,融合项目结构便捷前端拿取合约 Abi 我们用react 创建了一个 dapp 项目 并将前后端代码做了个整合 那么 我们就来好好整理一下 我们的前端react的项目结构 我们在 src 目录下创建一个 components 用来存放我们的…...

基于SpringBoot的旅游网站开题报告

一、选题背景 随着旅游业的蓬勃发展和人们对旅游需求的增长,开发一个基于Spring Boot的旅游网站具有重要的意义。传统的旅行社模式逐渐不能满足人们个性化、多样化的旅游需求,因此开发一个在线旅游网站能够为用户提供更加便捷、灵活、个性化的旅游服务&…...

基于SSM的班级事务管理系统

基于SSM的班级事务管理系统 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatisVue工具:IDEA/Ecilpse、Navicat、Maven 系统展示 前台界面 登录界面 班委界面 学生界面 管理员界面 摘要 基于SSM(Spring、Spring…...

基于Spring Boot开发的汽车租赁管理系统

文章目录 项目介绍主要功能截图:后台前台部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Spring Boot开发的汽车租赁…...

精品基于django的高校竞赛比赛管理系统Python

《[含文档PPT源码等]精品基于django的高校竞赛管理系统》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等! 软件开发环境及开发工具: 开发语言:python 使用框架:Django 前端技术:JavaScri…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...

PydanticAI快速入门示例

参考链接&#xff1a;https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...

C# WPF 左右布局实现学习笔记(1)

开发流程视频&#xff1a; https://www.youtube.com/watch?vCkHyDYeImjY&ab_channelC%23DesignPro Git源码&#xff1a; GitHub - CSharpDesignPro/Page-Navigation-using-MVVM: WPF - Page Navigation using MVVM 1. 新建工程 新建WPF应用&#xff08;.NET Framework) 2.…...

iOS 项目怎么构建稳定性保障机制?一次系统性防错经验分享(含 KeyMob 工具应用)

崩溃、内存飙升、后台任务未释放、页面卡顿、日志丢失——稳定性问题&#xff0c;不一定会立刻崩&#xff0c;但一旦积累&#xff0c;就是“上线后救不回来的代价”。 稳定性保障不是某个工具的功能&#xff0c;而是一套贯穿开发、测试、上线全流程的“观测分析防范”机制。 …...

深入理解 C++ 左值右值、std::move 与函数重载中的参数传递

在 C 编程中&#xff0c;左值和右值的概念以及std::move的使用&#xff0c;常常让开发者感到困惑。特别是在函数重载场景下&#xff0c;如何合理利用这些特性来优化代码性能、确保语义正确&#xff0c;更是一个值得深入探讨的话题。 在开始之前&#xff0c;先提出几个问题&…...