当前位置: 首页 > news >正文

【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】

【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】

提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论

文章目录

  • 【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】
  • 前言
  • Python版本OpenCV
    • Windows平台安装OpenCV
    • opencv调用onnx模型
  • C++版本OpenCV_GPU
    • Windows平台编译安装OpenCV
    • opencv调用onnx模型
  • 总结


前言

OpenCV是一个基于BSD许可发行的跨平台计算机视觉和机器学习软件库(开源),可以运行在Linux、Windows、Android和Mac OS操作系统上。可以将pytorch中训练好的模型使用ONNX导出,再使用opencv中的dnn模块直接进行加载使用。
系列学习目录:
【CPU】Pytorch模型转ONNX模型流程详解
【GPU】Pytorch模型转ONNX格式流程详解
【ONNX模型】快速部署
【ONNX模型】多线程快速部署
【ONNX模型】opencv_cpu调用onnx
【ONNX模型】opencv_gpu调用onnx


Python版本OpenCV

Windows平台安装OpenCV

博主在win10环境下装anaconda环境,而后搭建onnx模型运行所需的openCV环境。

# 搭建opencv环境
conda create -n opencv_onnx_gpu python=3.10.9 -y
# 激活环境
activate opencv_onnx_gpu 

博主使用opencv-4.8.0版本,GPU版本不能直接通过pip下载安装进行使用,必须要在本地进行编译。编译过程具体参考博主的博文windows10下opencv4.8.0-cuda Python版本源码编译教程。

import cv2
cv2.__version__

opencv调用onnx模型

随便拷贝一组数据用来测试数据GPU版本相比于CPU版本在速度上的提升。在项目路径下博主拷贝了CAMO数据集。

将PFNet.onnx也拷贝到项目路径下。

使用opencv并调用gpu完成了整个推理流程。

import cv2
import numpy as np
import glob
import os
import timedef readImagesInFolder(folderPath,images):fileNames = glob.glob(os.path.join(folderPath, '*.jpg'))for fileName in fileNames:bgrImage = cv2.imread(fileName, cv2.IMREAD_COLOR)if bgrImage is not None:rgbImage = cv2.cvtColor(bgrImage, cv2.COLOR_BGR2RGB)images.append(rgbImage)def transformation(image, targetSize, mean, std):resizedImage = cv2.resize(image, targetSize, interpolation=cv2.INTER_AREA)normalized = resizedImage.astype(np.float32)normalized /= 255.0normalized -= meannormalized /= stdreturn normalizeddef loadModel(onnx_path):net = cv2.dnn.readNetFromONNX(onnx_path)return netdef main():# 图片存放文件路径folderPath = "D:/deeplean_demo/opencv_onnx_gpu/CAMO/c"rgbImages = []readImagesInFolder(folderPath, rgbImages)# 加载ONNX模型onnx_path = "D:/deeplean_demo/opencv_onnx_gpu/PFNet.onnx"net = loadModel(onnx_path)# 设置CUDA为后端# net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)# net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)output_probs = []output_layer_names = net.getUnconnectedOutLayersNames()# 定义目标图像大小target_size = (416, 416)# 定义每个通道的归一化参数mean = (0.485, 0.456, 0.406) # 均值std = (0.229, 0.224, 0.225)  # 标准差# 开始计时start = time.time()for rgb_image in rgbImages:# 获取图像的大小original_size = (rgb_image.shape[1], rgb_image.shape[0])# 图片归一化normalized = transformation(rgb_image, target_size, mean, std)print(normalized.shape[:2])blob = cv2.dnn.blobFromImage(normalized)# 将Blob设置为模型的输入net.setInput(blob)# 运行前向传播output_probs = net.forward(output_layer_names)# 获取最完整的预测prediction = output_probs[3]# 预测图变maskmask = cv2.resize(np.squeeze(prediction)* 255.0, original_size, interpolation=cv2.INTER_AREA)end = time.time()# 计算耗时elapsed_time = end - start# 打印耗时print("Elapsed time:", elapsed_time, "seconds")if __name__ == "__main__":main()

gpu模式下250张图片只用了大约13秒。

假设注释掉与gou相关的代码

net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)

cpu模式下250张图片就用了大约95秒。


C++版本OpenCV_GPU

Windows平台编译安装OpenCV

博主使用opencv-4.8.0版本,GPU版本不能直接通过官网下载exe进行使用,必须要在本地进行编译。编译过程具体参考博主的博文【windows10下opencv4.8.0-cuda C++版本源码编译教程】。
编译完成后,在输出的文件夹内找到install文件,将其拷贝合适的位置。

博主新建了一个名为opencv_gpu的文件夹,并将install重命名位build放在其中。

打开VS 2019:新建新项目---->空项目---->配置项目---->项目路径以及勾选“将解决方案和项目放在同一目录中---->点击创建。

在解决方案–>源文件–>右键添加新建项。这里暂时可以默认空着不做处理。

设置OpenCV路径:项目---->属性。假设没有新建cpp文件,空项目的属性页就不会存在C/C++这一项目。

添加附加包含目录:Release | x64---->C/C+±—>常规---->附加包含目录。

D:\C++_demo\opencv_gpu\build\x64\vc16\bin
D:\C++_demo\opencv_gpu\build\bin
D:\C++_demo\opencv_gpu\build\include
D:\C++_demo\opencv_gpu\build\include\opencv2

链接器:Release | x64---->链接器---->常规---->附加包含目录。

D:\C++_demo\opencv_gpu\build\x64\vc16\lib

链接器:Release | x64---->链接器---->输入---->附加依赖项。

在D:\C++_demo\opencv_gpu\build\x64\vc16\lib下找到附加依赖项的文件。

opencv_world480.lib

在Release x64模式下测试,将opencv_world480.dll文件复制到自己项目的Release下。

没有Release目录时,需要在Release | x64模式下运行一遍代码,代码部分在下一节提供,读者可以先行新建文件复制代码。

D:\C++_demo\opencv_gpu\build\x64\vc16\bin
===>
D:\C++_demo\opencv_onnx_gpu\x64\Releas


这里博主为了方便安装的是release版本的,读者可以安装debug版本的,流程基本一致,只需要将属性的Release | x64变成Debug | x64,然后附加依赖项由opencv_world480.lib变成opencv_world480d.lib,再将opencv_world480d.dll文件复制到自己项目的Release下。前提是你编译了debug版本oepncv。

opencv调用onnx模型

随便拷贝一组数据用来测试数据GPU版本相比于CPU版本在速度上的提升。在项目路径下博主拷贝了CAMO数据集。

将PFNet.onnx也拷贝到项目路径下。

将python版本的opencv转化成对应的c++版本的,发现输出的效果完全一致,onnx模型可以作为c++的接口来供其他应用调用。

#include <iostream>
#include <string>
#include <vector>
#include<opencv2/opencv.hpp>
#include <opencv2/dnn.hpp>
using namespace std;
void readImagesInFolder(const std::string& folderPath, std::vector<cv::Mat>& images)
{cv::String path(folderPath + "/*.jpg"); // 这里假设你的图片格式是.jpg,如果是其他格式请相应修改std::vector<cv::String> fileNames;cv::glob(path, fileNames, true); // 通过glob函数获取文件夹内所有符合格式的文件名cv::Mat rgbImage;for (const auto& fileName : fileNames){   // 使用imread函数读取图片cv::Mat bgrImage = cv::imread(fileName, cv::IMREAD_COLOR); // 图片格式转化bgr-->rgbif (!bgrImage.empty()){cv::cvtColor(bgrImage, rgbImage, cv::COLOR_BGR2RGB);images.push_back(rgbImage);}}
}cv::Mat transformation(const cv::Mat& image, const cv::Size & targetSize, const cv::Scalar& mean, const cv::Scalar& std) {cv::Mat resizedImage;//图片尺寸缩放cv::resize(image, resizedImage, targetSize, 0, 0, cv::INTER_AREA);cv::Mat normalized;resizedImage.convertTo(normalized, CV_32F);cv::subtract(normalized / 255.0, mean, normalized);cv::divide(normalized, std, normalized);return normalized;
}
cv::dnn::Net loadModel(const string& onnx_path) {cv::dnn::Net net = cv::dnn::readNetFromONNX(onnx_path);return net;
}
int main()
{   // 图片存放文件路径string folderPath = "D:/C++_demo/opencv_onnx_gpu/CAMO/c";std::vector<cv::Mat> rgbImages;readImagesInFolder(folderPath, rgbImages);// string image_path = "./animal-1.jpg";// 加载ONNX模型string onnx_path = "D:/C++_demo/opencv_onnx_gpu/PFNet.onnx";cv::dnn::Net net = loadModel(onnx_path);// 设置CUDA为后端net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);cv::Mat output_prob;std::vector<cv::Mat> output_probs;std::vector<cv::String> output_layer_names = net.getUnconnectedOutLayersNames();// 定义目标图像大小cv::Size targetSize(416, 416);// 定义每个通道的归一化参数cv::Scalar mean(0.485, 0.456, 0.406); // 均值cv::Scalar std(0.229, 0.224, 0.225);  // 标准差// 开始计时auto start = chrono::high_resolution_clock::now();for (const auto& rgbImage : rgbImages) {// 获取图像的大小cv::Size originalSize(rgbImage.cols, rgbImage.rows);//cv::imshow("输入窗口", rgbImage);//cv::waitKey(0);//cv::destroyAllWindows();// 图片归一化cv::Mat normalized = transformation(rgbImage, targetSize, mean, std);std::cout << normalized.size() << std::endl;cv::Mat blob = cv::dnn::blobFromImage(normalized);// 将Blob设置为模型的输入net.setInput(blob);// 运行前向传播net.forward(output_probs, output_layer_names);// 获取最完整的预测cv::Mat prediction = output_probs[3];// 预测图变maskcv::Mat mask;cv::resize(prediction.reshape(1, 416) * 255.0, mask, originalSize, 0, 0, cv::INTER_AREA);}auto end = std::chrono::high_resolution_clock::now();// 计算耗时std::chrono::duration<double> elapsed = end - start;double elapsedTime = elapsed.count();// 打印耗时std::cout << "Elapsed time: " << elapsedTime << " seconds" << std::endl;return 0;
}

gpu模式下250张图片只用了大约16秒。

假设注释掉与gou相关的代码

net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA);
net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);

cpu模式下250张图片就用了大约95秒。


总结

尽可能简单、详细的介绍Python和C++下Opencv_GPU调用ONNX模型的流程。

相关文章:

【深度学习】【Opencv】【GPU】python/C++调用onnx模型【基础】

【深度学习】【Opencv】【GPU】python/C调用onnx模型【基础】 提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论 文章目录 【深度学习】【Opencv】【GPU】python/C调用onnx模型【基础】前言Python版本OpenCVWindows平台安装OpenCVopencv调用onnx模型 C版本…...

Oracle update 关联更新优化方法

关联更新顾名思义就是指&#xff0c;更新的数据从关联的表中获取并update到目标表。并且该SQL将会是一个天然的嵌套循环。有两种优化思路解决&#xff1a; 1、PLSQL 根据rowid更新 是否需要加order by rowid的考量&#xff1a; 如果buffer cache足够大&#xff0c;能够放得下要…...

USB协议学习(一)帧格式以及协议抓取

USB协议学习&#xff08;一&#xff09;帧格式以及协议抓取 笔者来聊聊MPU的理解 这里写自定义目录标题 USB协议学习&#xff08;一&#xff09;帧格式以及协议抓取MPU的概念以及作用MPU的配置新的改变功能快捷键合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式…...

前端工程化知识系列(8)

目录 71.你有经验使用TypeScript或Flow等类型检查工具来提高前端代码的可维护性和质量吗&#xff1f;72. 如何处理前端应用的搜索引擎优化&#xff08;SEO&#xff09;问题&#xff0c;特别是在单页面应用&#xff08;SPA&#xff09;中&#xff1f;73. 你了解渐进式Web应用&am…...

UnrealEngine iOS 打包 —— 签名证书(cer、p12)生成

官方文档 docs.unrealengine.com/5.3/zh-CN/setting-up-ios-tvos-and-ipados-provisioning-profiles-and-signing-certificates-for-unreal-engine-projects 打开 ProjectSettings -> Platforms -> iOS 可以看到签名证书配置 需要拓展名为 .cer 和 .p12 的一对证书和密钥…...

【广州华锐互动】VR高层火灾应急疏散演练提供一种无风险的逃生体验

在科技进步的今天&#xff0c;我们已经能够利用虚拟现实&#xff08;VR&#xff09;技术来模拟各种紧急情况&#xff0c;其中就包括高楼火灾逃生。VR高层火灾应急疏散演练系统是一种新兴的技术&#xff0c;它使用虚拟现实环境来模拟高楼火灾的实际情况&#xff0c;为人们提供一…...

定档通知2024中国(上海)国际品牌叉车展览会

时 间&#xff1a;2024年7月24&#xff5e;26日 地 点&#xff1a;上海国家会展中心 ◆ 》》》展会概况&#xff1a; 叉车在“搬运设备”中扮演着非常重要的角色&#xff0c;是机械化装卸、堆垛和短距离运输的高效设备。近年来&#xff0c;在“节能环保&#xff0c…...

Ubuntu编译安装colmap遇到的几个问题以及解决

总体安装过程已经很明白了&#xff0c;写的人很多了&#xff0c;我就不赘述了&#xff0c;可以参考这里或者其他博客。我主要记录几个我遇到的问题以及解决方法。 1、cmake报错&#xff1a;No CMAKE_CUDA_COMPILER could be found. 这个原因是没找到cuda和nvcc目录&#xff0…...

【Qt上位机】打开本地表格文件并获取其中全部数据

前言 其实本文所实现的功能并非博主要实现的全部功能&#xff0c;只是全部功能中的一小部分&#xff0c;这里只是为了记录一下实现方法&#xff0c;防止后续忘记&#xff0c;仅供参考。 文章目录 一、实现效果二、UI设计三、程序设计3.1 选择本地表格文件3.2 获取表格总行列数3…...

香港服务器选纯国际线路上网稳定吗?

​  关于香港服务器的线路&#xff0c;我们平时接触较多的分三大类&#xff0c;即纯国际线路、回国专线和香港本地线路。三者价格上存有差距&#xff0c;原因体现在线路和网络质量上&#xff0c;当然这些会关系到服务器的速度和稳定性。譬如&#xff0c;有些用户在选择了纯国…...

USB PD3.1

目前我们大多数Type-C接口仍然采用的是PD3.0快充协议&#xff0c;按当前用户的使用场景来看功率也完全够用&#xff0c;那么PD3.1快充协议是什么&#xff1f;USB PD3.1到底有没有必要&#xff1f; 不妨我们先了解一下PD3.1: 5月25日&#xff0c;USB-IF协会推出了USB Type-C线…...

unity面试八股文 - 基础篇

委托是什么? event 关键字有什么用&#xff1f; 委托&#xff1a; 委托是一种特殊类型的对象&#xff0c;它包含了对一个方法的引用。简单来说&#xff0c;委托就像是一个安全的函数指针。它允许我们创建可在运行时动态更改其引用方法的变量&#xff0c;并且可以指向类中定义…...

构建高效问题解答平台:使用Cpolar和Tipas在Ubuntu上搭建专属问答网站

文章目录 前言2.Tipask网站搭建2.1 Tipask网站下载和安装2.2 Tipask网页测试2.3 cpolar的安装和注册 3. 本地网页发布3.1 Cpolar临时数据隧道3.2 Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3 Cpolar稳定隧道&#xff08;本地设置&#xff09; 4. 公网访问测试5. 结语 前…...

前馈型BP神经网络

1.感知机和激活函数 感知机&#xff0c;是构成神经网络的基本单位&#xff0c;一个感知机可以接收n个输入X&#xff08;x1,x2,x3…xn)T&#xff08;每个输入&#xff0c;可以理解为一种特征&#xff09;,n个输入对应n个权值W&#xff08;w1,w2,w3…wn),此外还有一个偏置项b&am…...

数据库实验一:学生信息管理系统数据库结构搭建和表的创建

实验项目名称&#xff1a;学生信息管理系统数据库结构搭建和表的创建 实验目的与要求实验原理与内容1. 数据库的组织结构2. 数据库的分离和附加3. 数据库表的创建&#xff0c;修改和删除 实验过程与结果1. 根据学生信息管理系统创建相关的数据库2. 数据库表初步设计及实现3. 实…...

解决 vscode使用Prettier格式化js文件报错:Cannot find module ‘./parser-babylon‘

报错如下&#xff1a; ["ERROR" - 11:48:58] Error formatting document. ["ERROR" - 11:48:58] Cannot find module ./parser-babylon Require stack: - d:\VueCode\VueProject\myqqmusic\node_modules\prettier\index.js - c:\Users\Administrator.SKY-2…...

汉服商城小程序的作用是什么

汉服在日常生活中越来越常见&#xff0c;大街小巷也有不少年轻人装扮甚是漂亮帅气&#xff0c;有些地区甚至还有相关的比赛等&#xff0c;作为近几年曝光的服饰&#xff0c;汉服市场规模持续增加中&#xff0c;各地线上线下商家也多了起来。 然而在实际经营中&#xff0c;汉服…...

9月大型语言模型研究论文总结

大型语言模型(llm)在今年发展迅速&#xff0c;随着新一代模型不断地被开发&#xff0c;研究人员和工程师了解最新进展变得非常重要。本文总结9-10月期间发布了一些重要的LLM论文。 这些论文涵盖了一系列语言模型的主题&#xff0c;从模型优化和缩放到推理、基准测试和增强性能…...

微信小程序--小程序框架

目录 前言&#xff1a; 一.框架基本介绍 1.整体结构&#xff1a; 2.页面结构&#xff1a; 3.生命周期&#xff1a; 4.事件系统&#xff1a; 5.数据绑定&#xff1a; 6.组件系统&#xff1a; 7.API&#xff1a; 8.路由&#xff1a; 9.模块化&#xff1a; 10.全局配置&…...

Java 全栈体系(三)

第一章 Java 基础语法 八、标识符 业内大多数程序员都在遵守阿里巴巴的命名规则。 1. 硬性要求 必须要这么做&#xff0c;否则代码会报错。 必须由数字、字母、下划线_、美元符号$组成。数字不能开头不能是关键字区分大小写的。 2. 软性建议 如果不这么做&#xff0c;代…...

爬虫学习日记第七篇(爬取github搜索仓库接口,其实不算爬虫)

github提供的搜索仓库的API https://api.github.com/ # 连接数据库 db mysql.connector.connect(host"***",user"***",password"***",database"***" ) # 创建游标 cursor db.cursor() # 从数据库中读取CVE ID cursor.execute("…...

子组件监听父组件消息,随之变化与不变化

父组件通过props传递给子组件消息&#xff0c;子组件有两种情况接收处理&#xff1a; 1、子组件监听父组件props的变化&#xff0c;同时随之变化【可以直接取props中的值展示&#xff0c;也可以监听值得变化处理】 2、子组件初始化时更新&#xff0c;随后不再随父组件变化 示…...

计算机操作系统面试题自用

什么是操作系统&#xff1a; 操作系统是管理硬件和软件的一种应用程序。操作系统是运行在计算机上最重要的一种软件 操作系统的主要功能 解释一下操作系统的主要目的是什么 操作系统是一种软件&#xff0c;它的主要目的有三种 1 管理计算机资源&#xff0c;这些资源包括 C…...

redis作为消息队列的缺点

Redis作为消息队列的不足。 1、基于内存 Redis是一种基于内存的数据库产品&#xff0c;这意味着数据存储在内存中&#xff0c;当内存不足时&#xff0c;Redis会使用基于磁盘的虚拟内存来存储数据。虽然这种虚拟内存机制可以增加Redis的存储容量&#xff0c;但也会降低Redis的…...

Redis五大数据类型的底层设计

SDS 无论是 Redis 的 Key 还是 Value&#xff0c;其基础数据类型都是字符串。虽然 Redis是使用标准 C 语言开发的&#xff0c;但并没有直接使用 C 语言中传统的字符串表示&#xff0c;而是自定义了一 种字符串。这种字符串本身的结构比较简单&#xff0c;但功能却非常强大&…...

logback的简单配置详解

<?xml version"1.0" encoding"UTF-8"?> <!--logback配置的根元素。scantrue表示logback将定期扫描配置文件以检测更改。scanPeriod"30 Period" 扫描间隔为30s--> <configuration scan"true" scanPeriod"30 seco…...

TatukGIS Developer Kernel使用教程:如何为FMX创建第一个应用程序

概述&#xff1a;TatukGIS Developer Kernel&#xff08;DK&#xff09;是一个用于开发自定义地理信息系统&#xff08;GIS&#xff09;应用程序以及解决方案的综合性软件开发工具包&#xff08;SDK&#xff09;。本篇文章主要介绍用DK11为FMX创建一个应用程序&#xff0c;现在…...

Ant Design Vue设置表格滚动 宽度自适应 不换行

Ant Design Vue设置表格滚动 宽度自适应 不换行 添加以下属性即可解决这个问题&#xff1a; <a-table :columns"columns" :data-source"list":pagination"false"bordered:scroll"{ x: max-content }" >...

在Linux上开启文件服务,需要安装并配置Samba

在Linux上开启文件服务&#xff0c;需要安装并配置Samba。以下是具体步骤&#xff1a; 安装Samba软件包&#xff1a;在终端中输入以下命令进行安装&#xff1a; 复制代码 sudo apt-get update && sudo apt-get install samba 配置Samba&#xff1a;编辑Samba配置文件…...

TypeScript 类型兼容性

TypeScript 类型兼容性 在前端开发中&#xff0c;使用 TypeScript 可以提供更强大的类型检查和类型安全。然而&#xff0c;了解 TypeScript 中的类型兼容性是至关重要的&#xff0c;因为它涉及如何处理不同类型之间的关系&#xff0c;以及在这些类型之间进行无缝的交互。本文将…...

wordpress 非80端口/怎么快速刷排名

目录LVS介绍LVS集群类型LVS调度算法ipvsadm/ipvsLVS-NAT模型演练LVS-DR模型演练LVS定义多集群FWM实现多集群统一调度LVS持久连接每端口持久每FWM持久每客户端持久LVS介绍一般来说&#xff0c;LVS采用三层结构&#xff1a;负载调度器、服务器池、共享存储。工作在TCP/IP协议的四…...

西海岸城市建设局网站/近期新闻热点事件简短

Ockam发布了一个基于Google Go语言的开源SDK&#xff0c;以允许开发人员将标识服务构建到其物联网应用程序中。 身份服务将由公司的“去中心化”云服务平台Ockam Network提供。 [ 什么是云计算&#xff1f; 您现在需要知道的一切 。 | 另外&#xff1a;InfoWorld的David Linth…...

循化县wap网站建设公司/微指数官网

string str "123"; int x 0; int.TryParse(str, out x) 返回一个bool型 为真str就是数字 为假str就不是一个数字 转载于:https://www.cnblogs.com/chenindex/archive/2010/08/19/1803770.html...

政府网站建设管理经验汇报材料/成都网络营销推广

dagger2 和 RxJava butterknife 以及 Retrofit使用起来非常酸爽 代码非常干净清晰 动手尝试 配置编译 DaggerAppComponent的时候 出现问题 配置dagger2 在 Application中能够顺利编译,但是添加完 butterknife之后 Application中的 DaggerAppComponent编译失败。原来是dagger2和…...

python web网站开发/媒体发稿平台

C程序设计实验报告 实验项目&#xff1a; 1、利用复化梯形公式计算定积分2、计算Ackerman函数3、编写计算x的y次幂的递归函数getpower(int x,int y)&#xff0c;并在主程序中实现输入输出4、编写计算学生年龄的递归函数5、编写递归函数实现Ackman函数 姓名&#xff1a;张时锋 …...

网站注册页面模板/国家免费技能培训平台

在自己做网站时&#xff0c;往往需要获取当前网页的URL网址&#xff0c;之前的建站教程中介绍了PHP怎么获取当前网页URL地址&#xff0c;这个教程&#xff0c;学做网站论坛介绍一下jquery怎么获取当前页面的URL网址。jquery获取当前页面的URL网址使用&#xff1a;window.locati…...