当前位置: 首页 > news >正文

Python实现贝叶斯优化器(Bayes_opt)优化支持向量机分类模型(SVC算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。




1.项目背景

贝叶斯优化器(BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。

贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。

贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。

本项目使用基于贝叶斯优化器(Bayes_opt)优化支持向量机分类算法来解决分类问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

数据详情如下(部分展示):

3.数据预处理

3.1用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

从上图可以看到,总共有10个字段。

关键代码:

3.2缺失值统计

使用Pandas工具的info()方法统计每个特征缺失情况:

从上图可以看到,数据不存在缺失值,总数据量为1000条。

关键代码:

3.3变量描述性统计分析

通过Pandas工具的describe()方法来来统计变量的平均值、标准差、最大值、最小值、分位数等信息:

关键代码如下:

4.探索性数据分析

4.1y变量分类柱状图

用Pandas工具的value_counts().plot()方法进行统计绘图,图形化展示如下:

从上面图中可以看到,分类为0和1的样本,数量基本一致。

4.2y变量类型为1 x1变量分布直方图

通过Matpltlib工具的hist()方法绘制直方图:

从上图可以看出,x1主要集中在-2到2之间。

4.3 相关性分析

通过Pandas工具的corr()方法和seaborn工具的heatmap()方法绘制相关性热力图:

从图中可以看到,正数为正相关,负数为负相关,绝对值越大相关性越强。

5.特征工程

5.1建立特征数据和标签数据

y为标签数据,除 y之外的为特征数据。关键代码如下:

5.2数据集拆分

数据集集拆分,分为训练集和测试集,80%训练集和20%测试集。关键代码如下:

6.构建贝叶斯优化器优化支持向量机分类模型

主要使用基于贝叶斯优化器优化支持向量机分类算法,用于目标分类。

6.1构建调优模型

6.2最优参数展示

寻优的过程信息:

最优参数结果展示:

最优参数组合:

C的参数值为: 7.872020435910932

gamma的参数值为: 0.01763788153507379

最优分数: 0.975

验证集准确率: 0.975

6.3最优参数构建模型

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、召回率、F1分值等等。

从上表可以看出,F1分值为0.982,说明此模型效果较好。

关键代码如下:

7.2分类报告

支持向量机分类模型的分类报告:

从上图可以看到,分类类型为0的F1分值为0.98;分类类型为1的F1分值为0.98;整个模型的准确率为0.98。

7.3混淆矩阵

从上图可以看出,实际为0预测不为0的 有1个样本;实际为1预测不为1的有3个样本,整体预测准确率良好。

8.结论与展望

综上所述,本项目采用了基于贝叶斯优化器优化支持向量机分类模型,最终证明了我们提出的模型效果良好。


本次机器学习项目实战所需的资料,项目资源如下:项目说明:链接:https://pan.baidu.com/s/1c6mQ_1YaDINFEttQymp2UQ提取码:thgk

相关文章:

Python实现贝叶斯优化器(Bayes_opt)优化支持向量机分类模型(SVC算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。1.项目背景贝叶斯优化器(BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。贝叶斯优化器是基…...

【华为OD机试模拟题】用 C++ 实现 - 分积木(2023.Q1)

最近更新的博客 华为OD机试 - 入栈出栈(C++) | 附带编码思路 【2023】 华为OD机试 - 箱子之形摆放(C++) | 附带编码思路 【2023】 华为OD机试 - 简易内存池 2(C++) | 附带编码思路 【2023】 华为OD机试 - 第 N 个排列(C++) | 附带编码思路 【2023】 华为OD机试 - 考古…...

FFmpeg/OpenCV 实现全屏斜体水印

实现思路 🤔​ 基于ffmpeg,画布的方式,创建画布 -> 水印 -> 旋转 -> 抠图 -> 叠加到图像上基于ffmpeg,旋转图片的方式,填充 -> 水印 -> 顺时针旋转 -> 逆时针旋转 -> 截图基于opencv&#xff…...

Calendar计算两个时间之间相差几个月

目录说明说明 计算两个时间之间相差几个月: public int getMonth(String startDt, String endDt) { int month 0;try {SimpleDateFormat sdf new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");Calendar satrt Calendar.getInstance();Calendar end Cal…...

FPGA基础知识

FPGA是在PAL、PLA和CPLD等可编程器件的基础上进一步发展起来的一种更复杂的可编程逻辑器件。它是ASIC领域中的一种半定制电路,既解决了定制电路的不足,又克服了原有可编程器件门电路有限的缺点。 由于FPGA需要被反复烧写,它实现组合逻辑的基…...

C语言运算符逻辑运算符位运算符

逻辑运算符 下表显示了 C 语言支持的所有关系逻辑运算符。假设变量 A 的值为 1,变量 B 的值为 0,则: 运算符 描述 实例 && 称为逻辑与运算符。如果两个操作数都非零,则条件为真。 (A && B) 为假。 || 称为逻辑…...

机器学习:基于主成分分析(PCA)对数据降维

机器学习:基于主成分分析(PCA)对数据降维 作者:AOAIYI 作者简介:Python领域新星作者、多项比赛获奖者:AOAIYI首页 😊😊😊如果觉得文章不错或能帮助到你学习,可…...

软件测试之测试模型

软件测试的发展 1960年代是调试时期(测试即调试) 1960年 - 1978年 论证时期(软件测试是验证软件是正确的)和 1979年 - 1982年 破坏性测试时期(为了发现错误而执行程序的过程) 1983年起,软件测…...

【项目精选】网络考试系统的设计与实现(源码+视频+论文)

点击下载源码 网络考试系统主要用于实现高校在线考试,基本功能包括:自动组卷、试卷发布、试卷批阅、试卷成绩统计等。本系统结构如下: (1)学生端: 登录模块:登录功能; 网络考试模块…...

Python近红外光谱分析与机器学习、深度学习方法融合实践技术

、 第一n入门基础【理论讲解与案 1、Python环境搭建( 下载、安装与版本选择)。 2、如何选择Python编辑器?(IDLE、Notepad、PyCharm、Jupyter…) 3、Python基础(数据类型和变量、字符串和编码、list和tu…...

实例7:树莓派呼吸灯

实例7:树莓派呼吸灯 实验目的 通过背景知识学习,了解digital与analog的区别。通过GPIO对外部LED灯进行呼吸控制,熟悉PWM技术。 实验要求 通过python编程,用GPIO控制LED灯,使之亮度逐渐增大,随后减小&am…...

java 接口 详解

目录 一、概述 1.介绍 : 2.定义 : 二、特点 1.接口成员变量的特点 : 2.接口成员方法的特点 : 3.接口构造方法的特点 : 4.接口创建对象的特点 : 5.接口继承关系的特点 : 三、应用 : 1.情景 : 2.多态 : ①多态的传递性 : ②关于接口的多态参数和多态…...

用 Visual Studio 升级 .NET 项目

现在,你已可以使用 Visual Studio 将所有 .NET 应用程序升级到最新版本的 .NET!这一功能可以从 Visual Studio 扩展包中获取,它会升级你的 .NET Framework 或 .NET Core 网页和桌面应用程序。一些项目类型仍正在开发中并将在不久的未来推出&a…...

JavaWeb中FilterListener的神奇作用

文章目录1,Filter1.1 Filter概述1.2 Filter快速入门1.2.1 开发步骤1.3 Filter执行流程1.4 Filter拦截路径配置1.5 过滤器链1.5.1 概述1.5.2 代码演示1.5.3 问题2,Listener2.1 概述2.2 分类2.3 代码演示最后说一句1,Filter 1.1 Filter概述 F…...

移动端布局

参考链接:抖音-移动端适配 一、移动端布局 flexiblepostcss-pxtorem vue-h5-template 老版本:动态去计算scale,并不影响rem的计算,好处是解决了1px的问题,但是第三方库一般都用dpr为1去做的,这就导致地图或…...

前端无感登录,大文件上传

后端设置token的一个失效时间,前端在token失效后不用重新登录 1,在相应中拦截,判断token返回过期后,调用刷新token的方法 2,后端返回过期的时间,前端判断过期的时间,然后到期后调用对应的方法…...

Spring Boot系列03--自动配置原理

目录1. 相关注解2. 自动配置原理分析3. 自动配置图示Spring Boot的核心优势:自动装配、约定大于配置。 1. 相关注解 ConfigurationProperties(prefix "前缀名")该注解用于自动配置的绑定,可以将application.properties配置中的值注入到 Bean…...

Java多线程(四)---并发编程容器

1.经常使用什么并发容器,为什么?答:Vector、ConcurrentHashMap、HasTable一般软件开发中容器用的最多的就是HashMap、ArrayList,LinkedList ,等等但是在多线程开发中就不能乱用容器,如果使用了未加锁&#…...

Apache Hadoop生态部署-Flume采集节点安装

目录 Apache Hadoop生态-目录汇总-持续更新 一:安装包准备 二:安装与常用配置 2.1:下载解压安装包 2.2:解决guava版本问题 2.3:修改配置 三:修复Taildir问题 3.1:Taildir Source能断点续…...

【OpenFOAM】-算例解析合集

【OpenFOAM】-算例解析合集OlaFlowinterFoamOlaFlow 【OpenFOAM】-olaFlow-算例1- baseWaveFlume 【OpenFOAM】-olaFlow-算例2- breakwater 【OpenFOAM】-olaFlow-算例3- currentWaveFlume 【OpenFOAM】-olaFlow-算例4- irreg45degTank 【OpenFOAM】-olaFlow-算例5- oppositeS…...

数据库|(一)数据库和SQL概述

(一)数据库和SQL概述1.1 数据库的好处1.2 数据库的概念1.3 数据库结构特点1.1 数据库的好处 实现数据持久化使用完整的管理系统统一管理,便于查询 1.2 数据库的概念 DB 数据库(database),存储数据的仓库&…...

【java基础】自定义类

文章目录基本介绍自定义类字段方法构造器main方法基本介绍 什么是类这里就不过多赘述了,这里来介绍关于类的几个名词 类是构造对象的模板或蓝图由类构造对象的过程称为创建类的实例封装就是将数据和行为组合在一个包中,并对对象的使用者隐藏具体的实现…...

7、STM32 FSMC驱动SRAM

本次使用CubeMx配置FSMC驱动SRAM,XM8A51216 IS62WV51216 原理图: 注意:FSMC_A0必须对应外部设备A0引脚 一、FSMC和FMC区别 FSMC:灵活的静态存储控制器 FMC:灵活存储控制器 区别:FSMC只能驱动静态存储控制器(如&…...

七、虚拟机栈

虚拟机栈出现的背景 1.由于跨平台性的设计,Java的指令都是根据栈来设计的,不同平台CPU架构不同,所以不能设计为基于寄存器的。 2.优点是跨平台,指令集小,编译器容易实现,缺点是性能下降,实现同…...

Linux其他常用命令

Linux其他常用命令查找文件find 命令功能非常强大,通常用在特定目录下搜索符合条件的文件如果省略路径,表示在当前文件夹下查找之前学习的通配符,在使用 find 命令时同时可用演练目标1.搜索桌面目录下,文件名包含1的文件find Desk…...

一次性打包学透 Spring

不知从何时开始,Spring 这个词开始频繁地出现在 Java 服务端开发者的日常工作中,很多 Java 开发者从工作的第一天开始就在使用 Spring Framework,甚至有人调侃“不会 Spring 都不好意思自称是个 Java 开发者”。 之所以出现这种局面&#xf…...

1080T、2080T、4070T显卡的深度学习性能测试和结论

先说结论: 4070T显卡FP32的训练和推理速度跟3090应该基本类似。但由于显存12G偏低,4070T不太适合如今的深度学习模型训练(新手列外,大部分模型都能训练起来,耗电也相对很低),更适合测试最新的一…...

SpringBoot搭建SpringMVC项目

前言据我的了解,现在不管是大公司或是小公司,如果使用java开发一个web项目,大部分都会选择使用SpringBoot,关于Springboot的好处,就不在这里过多赘述,总之Springboot有一套完整的生态,从项目构建…...

Prescriptive Analytics for Flexible Capacity Management

3 本节根据Netessine等人(2002年)和Bassok等人(1999年)对我们解决的容量规划问题进行了正式描述。考虑一家以pi(I1,…,I)的单价提供I服务的公司。在每个计划周期t∈{1,……...

超简单的待办事项列表管理器todo

什么是 todo ? todo 是一个自托管的 todo web 应用程序,可让您以简单且最少的方式跟踪您的 todo。📝 老苏觉得和之前介绍的 KissLists 比较像 文章传送门:最简单的共享列表服务器KissLists 官方提供了 Demo 演示站点:https://tod…...