基于tornado BELLE 搭建本地的web 服务
我的github
将BELLE 封装成web 后端服务,采用tornado 框架
import timeimport torch
import torch.nn as nnfrom gptq import *
from modelutils import *
from quant import *from transformers import AutoTokenizer
import sys
import json
#import lightgbm as lgb
import logging
import tornado.escape
import tornado.ioloop
import tornado.web
import traceback
DEV = torch.device('cuda:0')def get_bloom(model):import torchdef skip(*args, **kwargs):passtorch.nn.init.kaiming_uniform_ = skiptorch.nn.init.uniform_ = skiptorch.nn.init.normal_ = skipfrom transformers import BloomForCausalLMmodel = BloomForCausalLM.from_pretrained(model, torch_dtype='auto')model.seqlen = 2048return modeldef load_quant(model, checkpoint, wbits, groupsize):from transformers import BloomConfig, BloomForCausalLM config = BloomConfig.from_pretrained(model)def noop(*args, **kwargs):passtorch.nn.init.kaiming_uniform_ = noop torch.nn.init.uniform_ = noop torch.nn.init.normal_ = noop torch.set_default_dtype(torch.half)transformers.modeling_utils._init_weights = Falsetorch.set_default_dtype(torch.half)model = BloomForCausalLM(config)torch.set_default_dtype(torch.float)model = model.eval()layers = find_layers(model)for name in ['lm_head']:if name in layers:del layers[name]make_quant(model, layers, wbits, groupsize)print('Loading model ...')if checkpoint.endswith('.safetensors'):from safetensors.torch import load_file as safe_loadmodel.load_state_dict(safe_load(checkpoint))else:model.load_state_dict(torch.load(checkpoint,map_location=torch.device('cuda')))model.seqlen = 2048print('Done.')return modelimport argparse
from datautils import *parser = argparse.ArgumentParser()parser.add_argument('model', type=str,help='llama model to load'
)
parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16],help='#bits to use for quantization; use 16 for evaluating base model.'
)
parser.add_argument('--groupsize', type=int, default=-1,help='Groupsize to use for quantization; default uses full row.'
)
parser.add_argument('--load', type=str, default='',help='Load quantized model.'
)parser.add_argument('--text', type=str,help='hello'
)parser.add_argument('--min_length', type=int, default=10,help='The minimum length of the sequence to be generated.'
)parser.add_argument('--max_length', type=int, default=1024,help='The maximum length of the sequence to be generated.'
)parser.add_argument('--top_p', type=float , default=0.95,help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.'
)parser.add_argument('--temperature', type=float, default=0.8,help='The value used to module the next token probabilities.'
)args = parser.parse_args()if type(args.load) is not str:args.load = args.load.as_posix()if args.load:model = load_quant(args.model, args.load, args.wbits, args.groupsize)
else:model = get_bloom(args.model)model.eval()model.to(DEV)
tokenizer = AutoTokenizer.from_pretrained(args.model)
print("Human:")inputs = 'Human: ' +'hello' + '\n\nAssistant:'
input_ids = tokenizer.encode(inputs, return_tensors="pt").to(DEV)
"""
with torch.no_grad():generated_ids = model.generate(input_ids,do_sample=True,min_length=args.min_length,max_length=args.max_length,top_p=args.top_p,temperature=args.temperature,)
print("Assistant:\n")
print(tokenizer.decode([el.item() for el in generated_ids[0]])[len(inputs):]) # generated_ids开头加上了bos_token,需要将inpu的内容截断,只输出Assistant
print("\n-------------------------------\n")"""
#python bloom_inference.py BELLE_BLOOM_GPTQ_4BIT --temperature 1.2 --wbits 4 --groupsize 128 --load BELLE_BLOOM_GPTQ_4BIT/bloom7b-2m-4bit-128g.pt
class GateAPIHandler(tornado.web.RequestHandler):def initialize(self):self.set_header("Content-Type", "application/text")self.set_header("Access-Control-Allow-Origin", "*")async def post(self):print("BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB")postArgs = self.request.body_argumentsprint( postArgs)if (not 'status' in postArgs):return tornado.web.HTTPError(400)try:json_str = postArgs.get("status")[0]
# req = json.loads(json_str)print(json_str)#logging.error("recieve time : {0} . player id : {1}".format(str(time.time()), str(req["playerID"])))inputs = 'Human: ' +json_str.decode('utf-8') + '\n\nAssistant:'input_ids = tokenizer.encode(inputs, return_tensors="pt").to(DEV)with torch.no_grad():generated_ids = model.generate(input_ids,do_sample=True,min_length=args.min_length,max_length=args.max_length,top_p=args.top_p,temperature=args.temperature,)print("Assistant:\n")answer=tokenizer.decode([el.item() for el in generated_ids[0]])[len(inputs):]print(answer) # generated_ids开头加上了bos_token,需要将inpu的内容截断,只输出Assistant result = {'belle':answer}pred_str = str(json.dumps(result))self.write(pred_str)#logging.error("callback time : {0} . player id : {1}, result:{2}".format(str(time.time()), str(playerID), pred_str))except Exception as e:logging.error("Error: {0}.".format(e))traceback.print_exc()raise tornado.web.HTTPError(500)def get(self):raise tornado.web.HTTPError(300)import logging
import tornado.autoreload
import tornado.ioloop
import tornado.options
import tornado.web
import tornado.httpserver
#import itempredict
import argparse
from tornado.httpserver import HTTPServer#trace()
if __name__ == "__main__":tornado.options.define("port", default=8081,type=int, help="This is a port number",metavar=None, multiple=False, group=None, callback=None)tornado.options.parse_command_line()app = tornado.web.Application([(r"/", GateAPIHandler),])apiport = tornado.options.options.portapp.listen(apiport)logging.info("Start Gate API server on port {0}.".format(apiport))server = HTTPServer(app)server.start(1)#trace()#tornado.autoreload.start()tornado.ioloop.IOLoop.instance().start()
import base64
import json
import time
import requests
from utils.ops import read_wav_bytesURL = 'http://192.168.3.9:8081'#wav_bytes, sample_rate, channels, sample_width = read_wav_bytes('out.wav')
data = {'status': ' 如何理解黑格尔的 量变引起质变规律和否定之否定规律',}t0=time.time()
r = requests.post(URL, data=data)
t1=time.time()
r.encoding='utf-8'result = json.loads(r.text)
print(result)
print('time:', t1-t0, 's')
相关文章:

基于tornado BELLE 搭建本地的web 服务
我的github 将BELLE 封装成web 后端服务,采用tornado 框架 import timeimport torch import torch.nn as nnfrom gptq import * from modelutils import * from quant import *from transformers import AutoTokenizer import sys import json #import lightgbm a…...
信息系统漏洞与风险管理制度
1、总则 1.1、目的 为了进一步规范XXXXX单位信息系统风险管理活动,提升风险管理工作的可操纵性和适用性,使信息网络正常运行,防止网络攻击,保证业务的正常进行,依据XXXXX单位员的相关规范和标准规定,特制…...
Hadoop3教程(十七):MapReduce之ReduceJoin案例分析
文章目录 (113)ReduceJoin案例需求分析(114)ReduceJoin案例代码实操 - TableBean(115)ReduceJoin案例代码实操 - TableMapper(116)ReduceJoin案例代码实操 - Reducer及Driver参考文献…...

BAT026:删除当前目录及子目录下的空文件夹
引言:编写批处理程序,实现批量删除当前目录及子目录下的空文件夹。 一、新建Windows批处理文件 参考博客: CSDNhttps://mp.csdn.net/mp_blog/creation/editor/132137544 二、写入批处理代码 1.右键新建的批处理文件,点击【编辑…...
nodejs+vue网课学习平台
目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...
Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk
本文是LLM系列文章,针对《Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk》的翻译。 语言模型能制造乐趣吗?中国滑稽相声个案研究 摘要1 引言2 问题定义3 数据集4 使用自动评估生成基准5 人工评估6 讨论7 结论与未来工作 摘要 语言是…...

阿里云云服务器实例使用教学
目录 云服务器免费试用 详细步骤 Xshell 远程连接 云服务器免费试用 阿里云云服务器网址:阿里云免费试用 - 阿里云 详细步骤 访问阿里云免费试用。单击页面右上方的登录/注册按钮,并根据页面提示完成账号登录(已有阿里云账号)…...
promisify 是 Node.js 标准库 util 模块中的一个函数
promisify 是 Node.js 标准库 util 模块中的一个函数。它用于将遵循 Node.js 回调风格的函数转换为返回 Promise 的函数。这使得你可以使用 async/await 语法来等待异步操作完成,从而让异步代码看起来更像同步代码。 在 Node.js 的回调风格中,函数通常接…...

ArcGIS在VUE框架中的构建思想
项目快要上线了,出乎意料的有些空闲时间。想着就把其他公司开发的一期代码里面,把关于地图方面的代码给优化一下。试运行的时候,客户说控制台有很多飘红的报错,他们很在意,虽然很不情愿,但能改的就给改了吧…...

【Overload游戏引擎细节分析】视图投影矩阵计算与摄像机
本文只罗列公式,不做具体的推导。 OpenGL本身没有摄像机(Camera)的概念,但我们为了产品上的需求与编程上的方便,一般会抽象一个摄像机组件。摄像机类似于人眼,可以建立一个本地坐标系。相机的位置是坐标原点,摄像机的朝…...

什么是云原生?零基础学云原生难吗?
伴随着云计算的浪潮,云原生概念也应运而生,而且火得一塌糊涂,但真正谈起“云原生”,大多数非 IT 从业者的认知往往仅限于将服务应用放入云端,在云上处理业务。实际上,云原生远不止于此。 现在越来越多的企…...

Ubuntu18.04下载安装基于使用QT的pcl1.13+vtk8.2,以及卸载
一、QVTKWidget、QVTKWidget2、QVTKOpenGLWidget、QVTKOpenGLNativeWidget 区别 1.Qt版本 Qt5.4以前版本:QVTKWidget2/QVTKWidget。 Qt5.4以后版本:QVTKOpenGLWidget/QVTKOpenGLWidget。 2.VTK版本(Qt版本为5.4之后) 在VTK8.2以前的版本:QVT…...

7 使用Docker容器管理的tomcat容器中的项目连接mysql数据库
1、查看容器的IP 1)进入容器 docker exec -it mysql-test /bin/bash 2)显示hosts文件内容 cat /etc/hosts 这里容器的ip为172.17.0.2 除了上面的方法外,也可以在容器外使用docker inspect查看容器的IP docker inspect mysql-test 以下为…...

双节前把我的网站重构了一遍
赶在中秋国庆假期前,终于将我的网站(https://spacexcode.com/[1])结构定好了,如之前所说,这个网站的定位就是作为自己的前端知识沉淀。内容大致从:前端涉及的基础知识分类汇总(知识库࿰…...

基于 nodejs+vue网上考勤系统
目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...

以数智化指标管理,驱动光伏能源行业的市场推进
近年来,碳中和、碳达峰等降低碳排放、提升环境健康度的政策和技术改进正在不断地被社会所认可和引起重视,也被越来越多的企业在生产运营和基础建设中列为重要目标之一。而光伏能源行业作为全球绿色能源、新能源的优秀解决方案,充分利用太阳能…...

lv8 嵌入式开发-网络编程开发 18 广播与组播的实现
目录 1 广播 1.1 什么是广播? 1.2 广播地址 1.3 广播的实现 2 组播 2.1 分类的IP地址 2.2 多播 IP 地址 2.3 组播的实现 1 广播 1.1 什么是广播? 数据包发送方式只有一个接受方,称为单播 如果同时发给局域网中的所有主机࿰…...
前端面试题个人笔记(后面继续更新完善)
文章目录 填空题部分简答题部分 if有好答案请各位大佬们在底下评论上,感谢 填空题部分 1、常见的css选择器 2、getElementById获取元素的(DOM)对象 简答题部分 1、介绍一下你对RESTful API的理解以及它的优势? 答: …...

软件设计之工厂方法模式
工厂方法模式指定义一个创建对象的接口,让子类决定实例化哪一个类。 结构关系如下: 可以看到,客户端创建了两个接口,一个AbstractFactory,负责创建产品,一个Product,负责产品的实现。ConcreteF…...

【Linux】shell运行原理及权限
主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法:算法专栏 C头疼…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
Robots.txt 文件
什么是robots.txt? robots.txt 是一个位于网站根目录下的文本文件(如:https://example.com/robots.txt),它用于指导网络爬虫(如搜索引擎的蜘蛛程序)如何抓取该网站的内容。这个文件遵循 Robots…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...