基于tornado BELLE 搭建本地的web 服务
我的github
将BELLE 封装成web 后端服务,采用tornado 框架
import timeimport torch
import torch.nn as nnfrom gptq import *
from modelutils import *
from quant import *from transformers import AutoTokenizer
import sys
import json
#import lightgbm as lgb
import logging
import tornado.escape
import tornado.ioloop
import tornado.web
import traceback
DEV = torch.device('cuda:0')def get_bloom(model):import torchdef skip(*args, **kwargs):passtorch.nn.init.kaiming_uniform_ = skiptorch.nn.init.uniform_ = skiptorch.nn.init.normal_ = skipfrom transformers import BloomForCausalLMmodel = BloomForCausalLM.from_pretrained(model, torch_dtype='auto')model.seqlen = 2048return modeldef load_quant(model, checkpoint, wbits, groupsize):from transformers import BloomConfig, BloomForCausalLM config = BloomConfig.from_pretrained(model)def noop(*args, **kwargs):passtorch.nn.init.kaiming_uniform_ = noop torch.nn.init.uniform_ = noop torch.nn.init.normal_ = noop torch.set_default_dtype(torch.half)transformers.modeling_utils._init_weights = Falsetorch.set_default_dtype(torch.half)model = BloomForCausalLM(config)torch.set_default_dtype(torch.float)model = model.eval()layers = find_layers(model)for name in ['lm_head']:if name in layers:del layers[name]make_quant(model, layers, wbits, groupsize)print('Loading model ...')if checkpoint.endswith('.safetensors'):from safetensors.torch import load_file as safe_loadmodel.load_state_dict(safe_load(checkpoint))else:model.load_state_dict(torch.load(checkpoint,map_location=torch.device('cuda')))model.seqlen = 2048print('Done.')return modelimport argparse
from datautils import *parser = argparse.ArgumentParser()parser.add_argument('model', type=str,help='llama model to load'
)
parser.add_argument('--wbits', type=int, default=16, choices=[2, 3, 4, 8, 16],help='#bits to use for quantization; use 16 for evaluating base model.'
)
parser.add_argument('--groupsize', type=int, default=-1,help='Groupsize to use for quantization; default uses full row.'
)
parser.add_argument('--load', type=str, default='',help='Load quantized model.'
)parser.add_argument('--text', type=str,help='hello'
)parser.add_argument('--min_length', type=int, default=10,help='The minimum length of the sequence to be generated.'
)parser.add_argument('--max_length', type=int, default=1024,help='The maximum length of the sequence to be generated.'
)parser.add_argument('--top_p', type=float , default=0.95,help='If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.'
)parser.add_argument('--temperature', type=float, default=0.8,help='The value used to module the next token probabilities.'
)args = parser.parse_args()if type(args.load) is not str:args.load = args.load.as_posix()if args.load:model = load_quant(args.model, args.load, args.wbits, args.groupsize)
else:model = get_bloom(args.model)model.eval()model.to(DEV)
tokenizer = AutoTokenizer.from_pretrained(args.model)
print("Human:")inputs = 'Human: ' +'hello' + '\n\nAssistant:'
input_ids = tokenizer.encode(inputs, return_tensors="pt").to(DEV)
"""
with torch.no_grad():generated_ids = model.generate(input_ids,do_sample=True,min_length=args.min_length,max_length=args.max_length,top_p=args.top_p,temperature=args.temperature,)
print("Assistant:\n")
print(tokenizer.decode([el.item() for el in generated_ids[0]])[len(inputs):]) # generated_ids开头加上了bos_token,需要将inpu的内容截断,只输出Assistant
print("\n-------------------------------\n")"""
#python bloom_inference.py BELLE_BLOOM_GPTQ_4BIT --temperature 1.2 --wbits 4 --groupsize 128 --load BELLE_BLOOM_GPTQ_4BIT/bloom7b-2m-4bit-128g.pt
class GateAPIHandler(tornado.web.RequestHandler):def initialize(self):self.set_header("Content-Type", "application/text")self.set_header("Access-Control-Allow-Origin", "*")async def post(self):print("BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB")postArgs = self.request.body_argumentsprint( postArgs)if (not 'status' in postArgs):return tornado.web.HTTPError(400)try:json_str = postArgs.get("status")[0]
# req = json.loads(json_str)print(json_str)#logging.error("recieve time : {0} . player id : {1}".format(str(time.time()), str(req["playerID"])))inputs = 'Human: ' +json_str.decode('utf-8') + '\n\nAssistant:'input_ids = tokenizer.encode(inputs, return_tensors="pt").to(DEV)with torch.no_grad():generated_ids = model.generate(input_ids,do_sample=True,min_length=args.min_length,max_length=args.max_length,top_p=args.top_p,temperature=args.temperature,)print("Assistant:\n")answer=tokenizer.decode([el.item() for el in generated_ids[0]])[len(inputs):]print(answer) # generated_ids开头加上了bos_token,需要将inpu的内容截断,只输出Assistant result = {'belle':answer}pred_str = str(json.dumps(result))self.write(pred_str)#logging.error("callback time : {0} . player id : {1}, result:{2}".format(str(time.time()), str(playerID), pred_str))except Exception as e:logging.error("Error: {0}.".format(e))traceback.print_exc()raise tornado.web.HTTPError(500)def get(self):raise tornado.web.HTTPError(300)import logging
import tornado.autoreload
import tornado.ioloop
import tornado.options
import tornado.web
import tornado.httpserver
#import itempredict
import argparse
from tornado.httpserver import HTTPServer#trace()
if __name__ == "__main__":tornado.options.define("port", default=8081,type=int, help="This is a port number",metavar=None, multiple=False, group=None, callback=None)tornado.options.parse_command_line()app = tornado.web.Application([(r"/", GateAPIHandler),])apiport = tornado.options.options.portapp.listen(apiport)logging.info("Start Gate API server on port {0}.".format(apiport))server = HTTPServer(app)server.start(1)#trace()#tornado.autoreload.start()tornado.ioloop.IOLoop.instance().start()
import base64
import json
import time
import requests
from utils.ops import read_wav_bytesURL = 'http://192.168.3.9:8081'#wav_bytes, sample_rate, channels, sample_width = read_wav_bytes('out.wav')
data = {'status': ' 如何理解黑格尔的 量变引起质变规律和否定之否定规律',}t0=time.time()
r = requests.post(URL, data=data)
t1=time.time()
r.encoding='utf-8'result = json.loads(r.text)
print(result)
print('time:', t1-t0, 's')

相关文章:
基于tornado BELLE 搭建本地的web 服务
我的github 将BELLE 封装成web 后端服务,采用tornado 框架 import timeimport torch import torch.nn as nnfrom gptq import * from modelutils import * from quant import *from transformers import AutoTokenizer import sys import json #import lightgbm a…...
信息系统漏洞与风险管理制度
1、总则 1.1、目的 为了进一步规范XXXXX单位信息系统风险管理活动,提升风险管理工作的可操纵性和适用性,使信息网络正常运行,防止网络攻击,保证业务的正常进行,依据XXXXX单位员的相关规范和标准规定,特制…...
Hadoop3教程(十七):MapReduce之ReduceJoin案例分析
文章目录 (113)ReduceJoin案例需求分析(114)ReduceJoin案例代码实操 - TableBean(115)ReduceJoin案例代码实操 - TableMapper(116)ReduceJoin案例代码实操 - Reducer及Driver参考文献…...
BAT026:删除当前目录及子目录下的空文件夹
引言:编写批处理程序,实现批量删除当前目录及子目录下的空文件夹。 一、新建Windows批处理文件 参考博客: CSDNhttps://mp.csdn.net/mp_blog/creation/editor/132137544 二、写入批处理代码 1.右键新建的批处理文件,点击【编辑…...
nodejs+vue网课学习平台
目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...
Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk
本文是LLM系列文章,针对《Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk》的翻译。 语言模型能制造乐趣吗?中国滑稽相声个案研究 摘要1 引言2 问题定义3 数据集4 使用自动评估生成基准5 人工评估6 讨论7 结论与未来工作 摘要 语言是…...
阿里云云服务器实例使用教学
目录 云服务器免费试用 详细步骤 Xshell 远程连接 云服务器免费试用 阿里云云服务器网址:阿里云免费试用 - 阿里云 详细步骤 访问阿里云免费试用。单击页面右上方的登录/注册按钮,并根据页面提示完成账号登录(已有阿里云账号)…...
promisify 是 Node.js 标准库 util 模块中的一个函数
promisify 是 Node.js 标准库 util 模块中的一个函数。它用于将遵循 Node.js 回调风格的函数转换为返回 Promise 的函数。这使得你可以使用 async/await 语法来等待异步操作完成,从而让异步代码看起来更像同步代码。 在 Node.js 的回调风格中,函数通常接…...
ArcGIS在VUE框架中的构建思想
项目快要上线了,出乎意料的有些空闲时间。想着就把其他公司开发的一期代码里面,把关于地图方面的代码给优化一下。试运行的时候,客户说控制台有很多飘红的报错,他们很在意,虽然很不情愿,但能改的就给改了吧…...
【Overload游戏引擎细节分析】视图投影矩阵计算与摄像机
本文只罗列公式,不做具体的推导。 OpenGL本身没有摄像机(Camera)的概念,但我们为了产品上的需求与编程上的方便,一般会抽象一个摄像机组件。摄像机类似于人眼,可以建立一个本地坐标系。相机的位置是坐标原点,摄像机的朝…...
什么是云原生?零基础学云原生难吗?
伴随着云计算的浪潮,云原生概念也应运而生,而且火得一塌糊涂,但真正谈起“云原生”,大多数非 IT 从业者的认知往往仅限于将服务应用放入云端,在云上处理业务。实际上,云原生远不止于此。 现在越来越多的企…...
Ubuntu18.04下载安装基于使用QT的pcl1.13+vtk8.2,以及卸载
一、QVTKWidget、QVTKWidget2、QVTKOpenGLWidget、QVTKOpenGLNativeWidget 区别 1.Qt版本 Qt5.4以前版本:QVTKWidget2/QVTKWidget。 Qt5.4以后版本:QVTKOpenGLWidget/QVTKOpenGLWidget。 2.VTK版本(Qt版本为5.4之后) 在VTK8.2以前的版本:QVT…...
7 使用Docker容器管理的tomcat容器中的项目连接mysql数据库
1、查看容器的IP 1)进入容器 docker exec -it mysql-test /bin/bash 2)显示hosts文件内容 cat /etc/hosts 这里容器的ip为172.17.0.2 除了上面的方法外,也可以在容器外使用docker inspect查看容器的IP docker inspect mysql-test 以下为…...
双节前把我的网站重构了一遍
赶在中秋国庆假期前,终于将我的网站(https://spacexcode.com/[1])结构定好了,如之前所说,这个网站的定位就是作为自己的前端知识沉淀。内容大致从:前端涉及的基础知识分类汇总(知识库࿰…...
基于 nodejs+vue网上考勤系统
目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...
以数智化指标管理,驱动光伏能源行业的市场推进
近年来,碳中和、碳达峰等降低碳排放、提升环境健康度的政策和技术改进正在不断地被社会所认可和引起重视,也被越来越多的企业在生产运营和基础建设中列为重要目标之一。而光伏能源行业作为全球绿色能源、新能源的优秀解决方案,充分利用太阳能…...
lv8 嵌入式开发-网络编程开发 18 广播与组播的实现
目录 1 广播 1.1 什么是广播? 1.2 广播地址 1.3 广播的实现 2 组播 2.1 分类的IP地址 2.2 多播 IP 地址 2.3 组播的实现 1 广播 1.1 什么是广播? 数据包发送方式只有一个接受方,称为单播 如果同时发给局域网中的所有主机࿰…...
前端面试题个人笔记(后面继续更新完善)
文章目录 填空题部分简答题部分 if有好答案请各位大佬们在底下评论上,感谢 填空题部分 1、常见的css选择器 2、getElementById获取元素的(DOM)对象 简答题部分 1、介绍一下你对RESTful API的理解以及它的优势? 答: …...
软件设计之工厂方法模式
工厂方法模式指定义一个创建对象的接口,让子类决定实例化哪一个类。 结构关系如下: 可以看到,客户端创建了两个接口,一个AbstractFactory,负责创建产品,一个Product,负责产品的实现。ConcreteF…...
【Linux】shell运行原理及权限
主页点击直达:个人主页 我的小仓库:代码仓库 C语言偷着笑:C语言专栏 数据结构挨打小记:初阶数据结构专栏 Linux被操作记:Linux专栏 LeetCode刷题掉发记:LeetCode刷题 算法:算法专栏 C头疼…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
