Python数据挖掘入门进阶与实用案例:自动售货机销售数据分析与应用
文章目录
- 写在前面
- 01 案例背景
- 02 分析目标
- 03 分析过程
- 04 数据预处理
- 1. 清洗数据
- 2.属性选择
- 3.属性规约
- 05 销售数据可视化分析
- 1.销售额和自动售货机数量的关系
- 2.订单数量和自动售货机数量的关系
- 3.畅销和滞销商品
- 4.自动售货机的销售情况
- 5.订单支付方式占比
- 6.各消费时段的订单用户占比
- 06 销售额预测
- 1.统计周销售额
- 2.平稳性检验
- 3.差分处理
- 4.模型定阶
- 5.模型预测
- 写作末尾
写在前面
本案例将主要结合自动售货机的实际情况,对销售的历史数据进行处理,利用pyecharts库、Matplotlib库进行可视化分析,并对未来4周商品的销售额进行预测,从而为企业制定相应的自动售货机市场需求分析及销售建议提供参考依据。更多详细内容请参考《Python数据挖掘:入门进阶与实用案例分析》一书。
01 案例背景
近年来,随着我国经济技术的不断提升,自动化机械在人们日常生活中扮演着越来越重要的角色,更多的被应用在不同的领域。而作为新的一种自动化零售业态,自动售货机在日常生活中应用越来越广泛。自动售货机销售产业在走向信息化、合理化同时,也面临着高度同质化、成本上升、毛利下降等诸多困难与问题,这也是大多数企业所会面临到的问题。
为了提高市场占有率和企业的竞争力,某企业在广东省某8个市部署了376台自动售货机,但经过一段时间后,发现其经营状况并不理想。而如何了解销售额、订单数量与自动售货机数量之间的关系,畅销或滞销的商品又有哪些,自动售货机的销售情况等,已成为该企业亟待解决的问题。
02 分析目标
获取了该企业某6个月的自动售货机销售数据,结合销售背景进行分析,并可视化展现销售现状,同时预测未来一段时间内的销售额,从而为企业制定营销策略提供一定的参考依据。
03 分析过程
04 数据预处理
1. 清洗数据
1.1 合并订单表并处理缺失值
由于订单表的数据是按月份分开存放的,为了方便后续对数据进行处理和可视化,所以需要对订单数据进行合并处理。同时,在合并订单表的数据后,为了了解订单表的缺失数据的基本情况,需要进行缺失值检测。合并订单表并进行缺失值检测,操作结果如图1所示。
由操作结果可知,合并后的订单数据有350867条记录,且订单表中含有缺失值的记录总共有279条,其数量相对较少,可直接使用删除法对其中的缺失值进行处理。
合并订单表、查看缺失值并处理缺失值,如代码清单1所示。
import pandas as pd# 读取数据
data4 = pd.read_csv('../data/订单表2018-4.csv', encoding='gbk')
data5 = pd.read_csv('../data/订单表2018-5.csv', encoding='gbk')
data6 = pd.read_csv('../data/订单表2018-6.csv', encoding='gbk')
data7 = pd.read_csv('../data/订单表2018-7.csv', encoding='gbk')
data8 = pd.read_csv('../data/订单表2018-8.csv', encoding='gbk')
data9 = pd.read_csv('../data/订单表2018-9.csv', encoding='gbk')# 合并数据
data = pd.concat([data4, data5, data6, data7, data8, data9], ignore_index=True)
print('订单表合并后的形状为', data.shape)
# 缺失值检测
print('订单表各属性的缺失值数目为:\n', data.isnull().sum())
data = data.dropna(how='any') # 删除缺失值
1.2 增加“市”属性
为了满足后续的数据可视化需求,需要在订单表中增加“市”属性,操作结果如图2所示。
增加“市”属性如代码清单2所示。
# 从省市区属性中提取市的信息,并创建新属性data['市'] = data['省市区'].str[3: 6]print('经过处理后的数据前5行为:\n', data.head())
1.3 处理订单表中的“商品详情”属性
通过浏览订单表数据发现,在“商品详情”属性中存在有异名同义的情况,即两个名称不同的值所代表的实际意义是一致的,如“脉动青柠X1;”“脉动青柠x1;”等。因为此情况会对后面的分析结果造成一定的影响,所以需要对订单表中的“商品详情”属性进行处理,增加“商品名称”属性,如代码清单3所示。
# 定义一个需剔除字符的列表error_str
error_str = [' ', '(', ')', '(', ')', '0', '1', '2', '3', '4', '5', '6','7', '8', '9', 'g', 'l', 'm', 'M', 'L', '听', '特', '饮', '罐','瓶', '只', '装', '欧', '式', '&', '%', 'X', 'x', ';']# 使用循环剔除指定字符
for i in error_str:data['商品详情'] = data['商品详情'].str.replace(i, '')# 新建“商品名称”属性,用于新数据的存放
data['商品名称'] = data['商品详情']
1.4 处理“总金额(元)”属性
此外,当浏览订单表数据时,发现在“总金额(元)”属性中,存在极少订单的金额很小,如0、0.01等。在现实生活中,这种记录存在的情况极少,且这部分数据不具有分析意义。因此,在本案例中,对订单的金额小于0.5的记录进行删除处理,操作结果如图3所示。
由操作结果可知,删除前的数据行列数目为(350617, 17),删除后的数据行列数目为(350450, 17)。
删除“总金额(元)”属性中订单的金额较少的记录如代码清单4所示。
# 删除金额较少的订单前的数据行列数目
print(data.shape)# 删除金额较少的订单后的数据行列数目
data = data[data['总金额(元)'] >= 0.5]
print(data.shape)
2.属性选择
因为订单表中的“手续费(元)”“收款方”“软件版本”“省市区”“商品详情”“退款金额(元)”等属性对本案例的分析没有意义,所以需要对其进行删除处理,选择合适的属性,操作的结果如图4所示。
属性选择如代码清单5所示。
# 对于订单表数据选择合适的属性
data = data.drop(['手续费(元)', '收款方', '软件版本', '省市区', '商品详情', '退款金额(元)'], axis=1)
print('选择后,数据属性为:\n', data.columns.values)
3.属性规约
在订单表“下单时间”属性中含有的信息量较多,并且存在概念分层的情况,需要对属性进行数据规约,提取需要的信息。提取相应的“小时”属性和“月份”属性,进一步泛化“小时”属性为“下单时间段”属性,规则如下:
在Python中规约订单表的属性,如代码清单6所示。
# 将时间格式的字符串转换为标准的时间格式
data['下单时间'] = pd.to_datetime(data['下单时间'])
data['小时'] = data['下单时间'].dt.hour # 提取时间中的小时
data['月份'] = data['下单时间'].dt.month # 提取时间中的月份
data['下单时间段'] = 'time' # 新增“下单时间段”属性,并将其初始化为time
exp1 = data['小时'] <= 5 # 判断小时是否小于等于5# 若条件为真,则时间段为凌晨
data.loc[exp1, '下单时间段'] = '凌晨'# 判断小时是否大于5且小于等于8
exp2 = (5 < data['小时']) & (data['小时'] <= 8)# 若条件为真,则时间段为早晨
data.loc[exp2, '下单时间段'] = '早晨'# 判断小时是否大于8且小于等于11
exp3 = (8 < data['小时']) & (data['小时'] <= 11)# 若条件为真,则时间段为上午
data.loc[exp3, '下单时间段'] = '上午'# 判断小时是否小大于11且小于等于13
exp4 = (11 < data['小时']) & (data['小时'] <= 13)# 若条件为真,则时间段为中午
data.loc[exp4, '下单时间段'] = '中午'# 判断小时是否大于13且小于等于16
exp5 = (13 < data['小时']) & (data['小时'] <= 16)# 若条件为真,则时间段为下午
data.loc[exp5, '下单时间段'] = '下午'# 判断小时是否大于16且小于等于19
exp6 = (16 < data['小时']) & (data['小时'] <= 19)# 若条件为真,则时间段为傍晚
data.loc[exp6, '下单时间段'] = '傍晚'# 判断小时是否大于19且小于等于24
exp7 = (19 < data['小时']) & (data['小时'] <= 24)# 若条件为真,则时间段为晚上
data.loc[exp7, '下单时间段'] = '晚上'
data.to_csv('../tmp/order.csv', index=False, encoding = 'gbk')
05 销售数据可视化分析
在销售数据中含有的数据量较多,作为企业管理人员以及决策制定者,无法直观了解目前自动售货机的销售状况。因此需要利用处理好的数据进行可视化分析,直观地展示销售走势以及各区销售情况等,为决策者提供参考。
1.销售额和自动售货机数量的关系
探索6个月销售额和自动售货机数量之间的关系,并按时间走势进行可视化分析,结果如图5所示。
由图5可知,4月至7月,自动售货机的数量在增加,销售额也随着自动售货机的数量增加而增加;8月,虽然自动售货机数量减少了4台,但是销售额还在增加;9月相比8月的自动售货机数量减少了6台,销售额也随着减少。可以推断出销售额与自动售货机的数量存在一定的相关性,增加自动售货机的数量将会带来销售额的增长。出现该情况可能是因为广东处于亚热带,气候相对炎热,而7、8、9月的气温也相对较高,人们使用自动售货机的频率也相对较高。
探索销售额和自动售货机数量之间的关系如代码清单7所示。
import pandas as pd
import numpy as np
from pyecharts.charts import Line
from pyecharts import options as opts
import matplotlib.pyplot as plt
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Griddata = pd.read_csv('../tmp/order.csv', encoding='gbk')def f(x):return len(list(set((x.values))))
# 绘制销售额和自动售货机数量之间的关系图
groupby1 = data.groupby(by='月份', as_index=False).agg({'设备编号': f, '总金额(元)': np.sum})
groupby1.columns = ['月份', '设备数量', '销售额']
line = (Line().add_xaxis([str(i) for i in groupby1['月份'].values.tolist()]).add_yaxis('销售额', np.round(groupby1['销售额'].values.tolist(), 2)).add_yaxis('设备数量', groupby1['设备数量'].values.tolist(), yaxis_index=1,symbol='triangle').set_series_opts(label_opts=opts.LabelOpts(is_show=True, position='top', font_size=10)).set_global_opts(xaxis_opts=opts.AxisOpts(name='月份', name_location='center', name_gap=25),title_opts=opts.TitleOpts(title='销售额和自动售货机数量之间的关系'),yaxis_opts=opts.AxisOpts( name='销售额(元)', name_location='center', name_gap=60,axislabel_opts=opts.LabelOpts(formatter='{value}'))).extend_axis(yaxis=opts.AxisOpts( name='设备数量(台)', name_location='center', name_gap=40,axislabel_opts=opts.LabelOpts(formatter='{value}'), interval=50)))
line.render_notebook()
2.订单数量和自动售货机数量的关系
探索6个月订单数量和自动售货机数量之间的关系,并按时间走势进行可视化分析,结果如图6所示。
由图6可知,4月至7月,自动售货机数量呈上升趋势,订单数量也随着自动售货机数量增加而增加,而8月至9月,自动售货机数量在减少,订单数量也在减少。这说明了订单数量与自动售货机的数量是严格相关的,增加自动售货机会给用户带来便利,从而提高订单数量。同时,结合图5可知,订单数量和销售额的变化趋势基本保持一样的变化趋势,这也说明了订单数量和销售额存在一定的相关性。
由于各市的设备数量并不一致,所以探索各市自动售货机的平均销售总额,并进行对比分析,结果如图7所示。
由图7可知,深圳市自动售货机平均销售总额最高,达到了6538.28元,排在其后的是珠海市和中山市。而最少的是清远市,其平均销售总额只有414.27元。出现此情况可能是因为不同区域的人流量不同,而深圳市相对于其他区域的人流量相对较大,清远市相对于其他区域的人流量相对较小。此外,广州市的人流量也相对较大,但其平均销售总额却相对较少,可能是因为自动售货机放置不合理导致的。
探索订单数量和自动售货机数量之间的关系,以及各市自动售货机的平均销售总额如代码清单8所示。
groupby2 = data.groupby(by='月份', as_index=False).agg({'设备编号': f, '订单编号': f})
groupby2.columns = ['月份', '设备数量', '订单数量']# 绘制图形
plt.figure(figsize=(10, 4))
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
fig, ax1 = plt.subplots() # 使用subplots函数创建窗口
ax1.plot(groupby2['月份'], groupby2['设备数量'], '--')
ax1.set_yticks(range(0, 350, 50)) # 设置y1轴的刻度范围
ax1.legend(('设备数量',), loc='upper left', fontsize=10)
ax2 = ax1.twinx() # 创建第二个坐标轴
ax2.plot(groupby2['月份'], groupby2['订单数量'])
ax2.set_yticks(range(0, 100000, 10000)) # 设置y2轴的刻度范围
ax2.legend(('订单数量',), loc='upper right', fontsize=10)
ax1.set_xlabel('月份')
ax1.set_ylabel('设备数量(台)')
ax2.set_ylabel('订单数量(单)')
plt.title('订单数量和自动售货机数量之间的关系')
plt.show()
gruop3 = data.groupby(by='市', as_index=False).agg({'总金额(元)':sum, '设备编号':f})
gruop3['销售总额'] = np.round(gruop3['总金额(元)'], 2)
gruop3['平均销售总额'] = np.round(gruop3['销售总额'] / gruop3['设备编号'], 2)
plt.bar(gruop3['市'].values.tolist(), gruop3['平均销售总额'].values.tolist(), color='#483D8B')
# 添加数据标注
for x, y in enumerate(gruop3['平均销售总额'].values):plt.text(x - 0.4, y + 100, '%s' %y, fontsize=8)
plt.xlabel('城市')
plt.ylabel('平均销售总额(元)')
plt.title('各市自动售货机平均销售总额')
plt.show()
3.畅销和滞销商品
查找6个月销售额排名前10和后10的商品,从而找出畅销商品和滞销商品,并对其销售额进行可视化分析,结果如图8、图9所示。
由图8可知,销售额排在第一的是商品0015,达到了56230.2元,其次是商品0013和商品0004等商品。由图9可知,销售额排在最后的商品是商品0104、商品0687和商品0540,其销售金额只有1元。
探索6个月销售额排名前10和后10的商品如代码清单9所示。
# 销售额前10的商品
group4 = data.groupby(by='商品ID', as_index=False)['总金额(元)'].sum()
group4.sort_values(by='总金额(元)', ascending=False, inplace=True)
d = group4.iloc[: 10]
x_data = d['商品ID'].values.tolist()
y_data = np.round(d['总金额(元)'].values, 2).tolist()
bar = (Bar(init_opts=opts.InitOpts(width='800px',height='600px')).add_xaxis(x_data).add_yaxis('', y_data, label_opts=opts.LabelOpts(font_size=15)).set_global_opts(title_opts=opts.TitleOpts(title='畅销前10的商品'),yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter='{value}',font_size=15)),xaxis_opts=opts.AxisOpts(type_='category',axislabel_opts=opts.LabelOpts({'interval': '0'}, font_size=15, rotate=30))))
bar.render_notebook()h = group4.iloc[-10: ]
x_data = h['商品ID'].values.tolist()
y_data = np.round(h['总金额(元)'].values, 2).tolist()
bar = (Bar().add_xaxis(x_data).add_yaxis('', y_data, label_opts=opts.LabelOpts(position='right')).set_global_opts(title_opts=opts.TitleOpts(title='滞销前10的商品'),xaxis_opts=opts.AxisOpts(axislabel_opts={'interval': '0'})).reversal_axis())
grid = Grid(init_opts=opts.InitOpts(width='600px', height='400px'))
grid.add(bar, grid_opts=opts.GridOpts(pos_left='18%'))
grid.render_notebook()
4.自动售货机的销售情况
探索6个月销售额前10以及销售额后10的设备及其所在的城市,并进行可视化分析,结果如图10、图11所示。
由图10可知,销售额靠前的设备所在城市主要集中在中山市、广州市、东莞市和深圳市,其中,销售额前3的设备都集中在中山市。由图11可知,广州市的设备113024、112719、112748的销售额只有1元,而销售额后10的设备全部在广州市和中山市。
探索6个月销售额前10以及销售额后10的设备及其所在的城市如代码清单10所示。
group5 = data.groupby(by=['市', '设备编号'], as_index=False)['总金额(元)'].sum()
group5.sort_values(by='总金额(元)', ascending=False, inplace=True)
b = group5[: 10]
label = []# 销售额前10的设备及其所在市
for i in range(len(b)):a = b.iloc[i, 0] + str(b.iloc[i, 1])label.append(a)
x = np.round(b['总金额(元)'], 2).values.tolist()
y = range(10)
plt.bar(x=0, bottom=y, height=0.4, width=x, orientation='horizontal')
plt.xticks(range(0, 80000, 10000)) # 设置x轴的刻度范围
plt.yticks(range(10), label)for y, x in enumerate(np.round(b['总金额(元)'], 2).values):plt.text(x + 500, y - 0.2, "%s" %x)
plt.xlabel('总金额(元)')
plt.title('销售额前10的设备及其所在市')
plt.show()
l = group5[-10: ]
label1 = []for i in range(len(l)):a = l.iloc[i, 0] + str(l.iloc[i, 1])label1.append(a)
x = np.round(l['总金额(元)'], 2).values.tolist()
y = range(10)
plt.bar(x=0, bottom=y, height=0.4, width=x, orientation='horizontal')
plt.xticks(range(0, 4, 1)) # 设置x轴的刻度范围
plt.yticks(range(10), label1)for y, x in enumerate(np.round(l['总金额(元)'], 2).values):plt.text(x, y, "%s" %x)
plt.xlabel('总金额(元)')
plt.title('销售额后10的设备及其所在市')
plt.show()
统计各城市销售额小于100的设备数量,并进行可视化分析,结果如图12所示。
由图12可知,销售额小于100的设备在广州市有52台,中山市有20台,佛山市有10台。出现这种情况的原因可能是设备放置位置的不合理,或设备放置过多造成的,因此可以适当调整自动售货机放置的位置和数量,减少设备和人员的浪费。
探索各城市销售额小于100元的设备数量如代码清单11所示。
l_b = group5[group5['总金额(元)'] < 100]
lb = l_b.groupby(by='市', as_index=False)['设备编号'].count()
x_data = lb['市'].values.tolist()
y_data = lb['设备编号'].values.tolist()
bar = (Bar(init_opts=opts.InitOpts(width='500px', height='400px')).add_xaxis(x_data).add_yaxis('', y_data).set_global_opts(title_opts=opts.TitleOpts(title='各市销售额小于100的设备数量')))
bar.render_notebook()
5.订单支付方式占比
对自动售货机上各商品订单的支付方式进行统计,并进行可视化分析,结果如图13所示。
由图13可知,订单的主要支付方式有4种,即微信、支付宝、会员余额和现金,其中支付方式最多的是微信支付,在所有支付方式中占到了89.05%。其次是支付宝支付,其占比为9.87%,而现金支付和会员余额支付的占比不到1%。
分析订单支付方式占比如代码清单12所示。
group6 = data.groupby(by='支付状态')['支付状态'].count()
method = group6.index.tolist()
num = group6.values.tolist()
pie_data = [(i, j) for i, j in zip(method, num)]
pie = (Pie().add('', pie_data, label_opts=opts.LabelOpts(formatter='{b}:{c}({d}%)')).set_global_opts(title_opts=opts.TitleOpts(title='订单支付方式占比')))
pie.render_notebook()
6.各消费时段的订单用户占比
在自动售货机的商品下单时间段上,统计各消费时段的订单用户数量,并进行可视化分析,结果如图14所示。
由图14可知,当消费时间段在下午时,其订单用户最多,占比达到了21.44%,其次是晚上,占比是17.36%,上午的占比也有17.08%,其余时间段的占比相对较少。
分析各消费时段的订单用户如代码清单13所示。
group7 = data.groupby(by='下单时间段')['购买用户'].count()
times = group7.index.tolist()
num = group7.values.tolist()
pie_data_2 = [(i, j) for i, j in zip(times, num)]
pie = (Pie().add('', pie_data_2, label_opts=opts.LabelOpts(formatter='{b}:{c}({d}%)'),radius=[60, 200], rosetype='radius', is_clockwise=False).set_global_opts(title_opts=opts.TitleOpts(title='各消费时段的订单用户占比')))
pie.render_notebook()
06 销售额预测
精准的销售额预测对于企业运营有着非常重要的指导意义,可以指导运营后台提前进行合理的资源配置,帮助企业管理人员制定合理的目标。同时,还可以更好地帮助企业采取更为针对性的促销手段,更加明确市场的需求,可以根据不同区域、不同时间划分等制定更加有效、合理的配货方案和商品价格,从而增加企业经营收益。
自动售货机的销售额预测指的是从售货机已有销售额的订单数据资料中,总结出商品销售额的变化规律,并根据该规律构建ARIMA模型,动态预测未来4周内商品的销售额。
ARIMA模型的建模步骤如图15所示。
1.统计周销售额
通过观察订单数据,发现该数据集记录的是当前日期时间下,售货机所售卖商品的订单状况,其出货状态有出货成功、出货失败、未出货等多种情况。然而,为预测未来4周的销售额,其所需样本数据应为实际的周销售额数据,因此,需要筛选状态为出货成功的数据并统计各周销售额,如代码清单14所示。
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.stattools import adfuller as ADF
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.tsa.arima_model import ARIMAdata = pd.read_csv('../tmp/order.csv', encoding='gbk')
# 提取出货状态为“出货成功”的下单时间和总金额(元)数据
data_info = data.loc[data['出货状态'] == '出货成功', ['下单时间', '总金额(元)']]
data_info = data_info.set_index('下单时间') # 将下单时间设为索引
# 将索引修改为日期时间格式
data_info.index = pd.to_datetime(data_info.index)
# 按周对总金额进行汇总,即求和
data_w = data_info.resample('W').sum()
2.平稳性检验
在使用ARIMA模型进行销售额预测之前,需要查看时间序列是否平稳,若数据非平稳,在数据分析挖掘的时候,则可能会产生“伪回归”等问题,从而影响分析结果。通过时间序列的时序图、自相关图及其单位根查看时间序列平稳性,时序图如图16所示,自相关图如图17所示,单位根检验结果如图18所示。
由图16可知,时序图显示该序列具有明显的递增趋势,可以判断为原始序列数据是非平稳序列;图17的自相关图显示的自相关系数大部分均大于零,说明序列间具有一定的长期相关性。由图18可知,在单位根检验统计量中,p值为0.251134,其值显著大于0.05,可以推断出该序列为非平稳序列(非平稳序列一定不是白噪声序列)。
绘制时序图、自相关图并进行单位根检验如代码清单15所示。
# 平稳性检验
# 判断是否为时间序列
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 显示负号
plt.figure(figsize=(8, 5))
plt.plot(data_w)
plt.tick_params(labelsize=14) # 设置坐标轴字体大小
plt.show()
# 定义绘制自相关图函数
def draw_acf(ts):plt.figure(facecolor='white', figsize=(10, 8))plot_acf(ts)plt.show()
# 定义单位根检验函数
def testStationarity(ts):dftest = ADF(ts)# 对ADF求得的值进行语义描述dfoutput = pd.Series(dftest[0:4], index = ['Test Statistic','p-value','#Lags Used','Number of Observations Used'])for key, value in dftest[4].items():dfoutput['Critical Value (%s)'%key] = valuereturn dfoutput
# 自相关
draw_acf(data_w)
# 单位根检验
print('单位根检验结果为:\n', testStationarity(data_w))
3.差分处理
在进行平稳性检验后,发现原始序列数据属于非平稳序列,而在使用ARIMA模型进行销售额预测时,需要序列数据是平稳序列,以避免序列中的随机游走形势影响预测结果。在Python中,可以通过二阶差分处理对数据进行平稳化操作,并查看二阶差分之后序列的平稳性和白噪声,其中二阶差分后序列的时序图如图19所示,二阶差分后序列的自相关图如图20所示,二阶差分后序列的单位根检验结果如图21所示,二阶差分后序列的白噪声检验结果如图22所示。
由图19可知,该序列无明显趋势,较为稳定;图20的自相关图显示自相关系数较为均匀,且较为接近于0,有较强的短期相关性。由图21可知,二阶差分后序列的单位根检验p值远小于0.05,可以判断出差分处理后的序列是平稳序列。由图22可知,在白噪声检验结果中,输出的p值小于0.05,同时结合单位根检验结果可以判断二阶差分之后的序列是平稳非白噪声序列。
差分处理并查看序列平稳性和白噪声如代码清单16所示。
# 二阶差分处理
data_w_T1 = data_w.diff().dropna()
data_w_T2 = data_w_T1.diff().dropna()# 差分后的时间序列图
plt.figure(figsize=(8, 5))
plt.plot(data_w_T2)
plt.tick_params(labelsize=14)
plt.show()# 差分自相关
draw_acf(data_w_T2)
# 差分单位根检验
print('差分单位根检验结果为:\n', testStationarity(data_w_T2))
# 白噪声检验
print('差分白噪声检验结果为:\n', acorr_ljungbox(data_w_T2, lags=1))
4.模型定阶
通常情况下,在进行模型预测前,需要寻找最优模型,以提高预测结果的准确性。针对ARIMA模型,可以通过BIC矩阵进行模型定阶。由于4.4.3小节进行了二阶差分处理,所以d=2。通过计算ARIMA(p,2,q)中所有组合的BIC信息量,取最小BIC信息量所对应的模型阶数,进而确定p值和q值,结果如图23所示。
由操作结果可知,当p值为0、q值为1时,BIC值最小,到此p、q定阶完成。
模型定阶如代码清单17所示。
# 通过BIC矩阵进行模型定阶
data_w = data_w.astype(float)
pmax = 3
qmax = 3
bic_matrix = [] # 初始化BIC矩阵
for p in range(pmax+1):tmp = []for q in range(qmax+1):try:tmp.append(ARIMA(data_w, (p, 2, q)).fit().bic)except:tmp.append(None)bic_matrix.append(tmp)
bic_matrix = pd.DataFrame(bic_matrix)
# 找出最小值位置
p, q = bic_matrix.stack().idxmin()
print('当BIC最小时,p值和q值分别为: ', p, q)
5.模型预测
应用ARIMA(0, 2, 1)模型对未来4周内商品的销售额进行预测,结果如图24所示。
预测未来4周内商品的销售额如代码清单18所示。
# 构建ARIMA(0, 2, 1)模型
model = ARIMA(data_w, (p, 2, q)).fit()# 预测未来4周的销售额
print('预测未来4周的销售额,其预测结果、标准误差、置信区间如下。\n', model.forecast(4))
注:利用ARIMA模型向前预测的周期越长,其误差越大。
推荐阅读
正版链接:https://item.jd.com/13814157.html
《Python数据挖掘:入门、进阶与实用案例分析》是一本以项目实战案例为驱动的数据挖掘著作,它能帮助完全没有Python编程基础和数据挖掘基础的读者快速掌握Python数据挖掘的技术、流程与方法。在写作方式上,与传统的“理论与实践结合”的入门书不同,它以数据挖掘领域的知名赛事“泰迪杯”数据挖掘挑战赛(已举办10届)和“泰迪杯”数据分析技能赛(已举办5届)(累计1500余所高校的10余万师生参赛)为依托,精选了11个经典赛题,将Python编程知识、数据挖掘知识和行业知识三者融合,让读者在实践中快速掌握电商、教育、交通、传媒、电力、旅游、制造等7大行业的数据挖掘方法。
本书不仅适用于零基础的读者自学,还适用于教师教学,为了帮助读者更加高效地掌握本书的内容,本书提供了以下10项附加价值:
(1)建模平台:提供一站式大数据挖掘建模平台,免配置,包含大量案例工程,边练边学,告别纸上谈兵
(2)视频讲解:提供不少于600分钟Python编程和数据挖掘相关教学视频,边看边学,快速收获经验值
(3)精选习题:精心挑选不少于60道数据挖掘练习题,并提供详细解答,边学边练,检查知识盲区
(4)作者答疑:学习过程中有任何问题,通过“树洞”小程序,纸书拍照,一键发给作者,边问边学,事半功倍
(5)数据文件:提供各个案例配套的数据文件,与工程实践结合,开箱即用,增强实操性
(6)程序代码:提供书中代码的电子文件及相关工具的安装包,代码导入平台即可运行,学习效果立竿见影
(7)教学课件:提供配套的PPT课件,使用本书作为教材的老师可以申请,节省备课时间
(8)模型服务:提供不少于10个数据挖掘模型,模型提供完整的案例实现过程,助力提升数据挖掘实践能力
(9)教学平台:泰迪科技为本书提供的附加资源提供一站式数据化教学平台,附有详细操作指南,边看边学边练,节省时间
(10)就业推荐:提供大量就业推荐机会,与1500+企业合作,包含华为、京东、美的等知名企业
通过学习本书,读者可以理解数据挖掘的原理,迅速掌握大数据技术的相关操作,为后续数据分析、数据挖掘、深度学习的实践及竞赛打下良好的技术基础。
写作末尾
🌻《Python数据挖掘:入门、进阶与实用案例分析 》:免费包邮送出
🌴根据博客阅读量本次活动一共赠书若干本,评论区抽取若干位小伙伴免费送出2本书
🌵参与方式:关注博主、点赞、收藏、评论区任意评论(不低于10个字,被折叠了无法参与抽奖,切记要点赞+收藏,否则抽奖无效,每个人最多评论三次)
🌼活动截止时间:2023-10-17 12:00:00
🍒开奖时间:2023-10-21 14:00:00
🍀中奖通知方式:私信通知
🍉中奖名单公布:https://bbs.csdn.net/forums/8318f682fbdb4e94b09bb465f04c4408
相关文章:
Python数据挖掘入门进阶与实用案例:自动售货机销售数据分析与应用
文章目录 写在前面01 案例背景02 分析目标03 分析过程04 数据预处理1. 清洗数据2.属性选择3.属性规约 05 销售数据可视化分析1.销售额和自动售货机数量的关系2.订单数量和自动售货机数量的关系3.畅销和滞销商品4.自动售货机的销售情况5.订单支付方式占比6.各消费时段的订单用户…...
2.3_9吸烟者问题
...
位运算基础知识及性质(精简总结)
目录 简介 基础知识 常用性质 简介 程计算机中的数在内存中都是以二进制形式进行存储的,用位运算就是直接对整数在内存中的二进制位进行操作,因此其执行效率非常高,在程序中尽量使用位运算进行操作,这会大大提高程序的性能。 基…...
阵列信号处理_对比常规波束形成法(CBF)和Capon算法
空间谱估计 利用电磁波信号来获取目标或信源相对天线阵列的角度信息的方式,也称测向、波达方向估计(DOA)。主要应用于雷达、通信、电子对抗和侦察等领域。 发展 常规波束形成(CBF)。本质是时域傅里叶变换在空域直接…...
通过循环生成多个echarts图表并实现自适应
不推荐使用grid布局,不清楚为什么左边一列的不会自适应,换成flex布局就可以了 主要方法借助中的getInstanceByDom方法 完整代码: <template><div class"statis"><div class"content" ><!-- v-for …...
MySQL——六、库表操作(下篇)
MySQL 一、INSERT语句二、REPLACE语句三、UPDATE语句四、delete和TRUNCATE语句五、MySQL用户授权1、密码策略2、用户授权和撤销授权 一、INSERT语句 #在表里面插入数据:默认情况下,一次插入操作只插入一行 方式1: INSERT [INTO] 表名 [(colu…...
自动化办公篇之python批量改名
#批量命名 import xlwings as xw app xw.App(visibleFalse,add_bookFalse) workbook app.books.open("测试表.xlsx") for sheet in workbook.sheets:sheet.namesheet.name.replace("彩印之","银河") workbook.save() app.quit()...
Android MediaCodec将h264实时视频流数据解码为yuv,并转换yuv的颜色格式为nv21
初始化mediacodec private MediaCodec mediaCodec;private ByteBuffer[] inputBuffers;private void initMediaCodec(Surface surface) {try {Log.d(TAG, "onGetNetVideoData: ");//创建解码器 H264的Type为 AACmediaCodec MediaCodec.createDecoderByType("v…...
Postgresql SQL 字段拼接
本文介绍Postgresql 数据库sql字段拼接的方法。 1.使用字符串连接函数 select pkey || - || vname as "项目-版本" from test_jira_project_verison; 2.使用字符串连接操作符 select CONCAT(pkey, -, vname) as "项目-版本" from test_jira_project_ve…...
MySQL 迁移完不能快速导数据了?
关于 5.6 升级到 5.7 之后,GTID 的相关功能的注意事项。 作者:秦福朗,爱可生 DBA 团是队成员,负责项目日常问题处理及公司平台问题排查。热爱互联网,会摄影、懂厨艺,不会厨艺的 DBA 不是好司机,…...
Lazysysadmin靶机
信息收集 主机发现 nmap -sn 192.168.88.0/24 //-sn:制作主机发现,不做端口扫描;扫描结果包含本机IP 端口扫描 nmap --min-rate 10000 -p- 192.168.88.136 扫描端口详细信息 端口扫描发现,该主机的22、80、139、445、3306、…...
LeetCode09——回文数
LeetCode09 自己写的解,转化为字符串再反转,比较笨。 import java.util.Scanner; public class Result01 {public static void main(String[] args) {System.out.println("请输入整数,我来帮您判断是否是回文数。");Scanner scanner new Sc…...
云安全—分布式基础
0x00 前言 云必然是依赖于分布式技术来进行实现的,所以有必要学习和来了解分布式相关的内容 0x01 分布式计算 1.基本概述 分布式计算的定义:通过网络互联的计算机都具有一定的计算能力,他们之间互相传递数据,实现信息共享&…...
Spring(18) @Order注解介绍、使用、底层原理
目录 一、简介二、List 注入使用示例2.1 测试接口类2.2 测试接口实现类12.3 测试接口实现类22.4 启动类(测试)2.5 测试结果场景一:场景二: 三、CommandLineRunner 使用示例3.1 接口实现类13.2 接口实现类23.3 测试结果场景一&…...
目标检测YOLO实战应用案例100讲-基于改进YOLOv6的轧钢表面细小缺陷检测
目录 前言 存在的问题 轧钢缺陷图像特征分析 2.1单一类型缺陷 2.2面状缺陷...
leetcode:507. 完美数(python3解法)
难度:简单 对于一个 正整数,如果它和除了它自身以外的所有 正因子 之和相等,我们称它为 「完美数」。 给定一个 整数 n, 如果是完美数,返回 true;否则返回 false。 示例 1: 输入:num…...
智能物联网解决方案:蓝牙IOT主控模块打造高效监测和超低功耗
物联网蓝牙模块,无论单模,还是双模,或者双模音频的选择,如下文说描述: 蓝牙芯片模块市场的百花齐放,也带来的工程师在选型时碰到很大的困难,但是无论是做半成品,还是做成品…...
vue 拿到数据后,没有重新渲染视图,nuxt.js拿到数据后,没有重新渲染视图,强制更新视图
以下为Vue2的解决方案 一、 Vue.set() 问:什么情况下使用? 答:如果你向响应式数据添加新的“属性”,理论上,一般情况下是没问题的,但是,如果你的级别比较深,又…...
Docker基础操作命令演示
Docker中的常见命令,可以参考官方文档:https://docs.docker.com/engine/reference/commandline/cli/ 1、常见命令介绍 其中,比较常见的命令有: 命令说明文档地址docker pull拉取镜像docker pulldocker push推送镜像到DockerReg…...
XTU-OJ 1175-Change
题目描述 一个班有N个学生,每个学生有第一学期成绩Xi,第二学期成绩Yi,请问成绩上升,持平,下降的人数。 输入 每个样例的第一行是整数N(0≤N≤50),如果N0,表示输入结束,这个样例不需要处理。 第二行是N个整数…...
Python环境安装
环境安装 Windows安装Linux安装 Windows安装 下载最新版Python https://www.python.org/downloads 打开安装包 选择安装路径,安装 安装 验证安装是否成功,命令行输入python Linux安装 安装依赖环境 yum install wget zlib-devel bzip2-devel op…...
苏轼在密州的四首千古名作
苏轼,一个从诗歌王国掉落人间的落魄贵族,整个政治生涯几乎都以流浪为主,在古诗词世界或许只有李白与之最是相似,不过李白的流浪属于荡歌山水、云游四方,而苏轼的流浪则带有被动的成分:一纸贬黜公文就是苏轼…...
[计算机提升] 域及域用户(组)
1.3 域及域用户(组) 1.3.1 域的概念 在Windows操作系统中,域(Domain)是指一个或多个计算机或资源的集合,这些计算机或资源受到单个安全数据库(域控制器)的管理和控制。域可以包含多个计算机、用户、组和其…...
命令行配置文件
在说具体的配置方式之前,我们需要首先梳理清除几个概念。这有助于我们明白自己在做什么,以及如何把经验平移到其他方面。 和命令行相关的有几个概念:terminal(终端)、shell(解释器);…...
MPP产品介绍-定位-应用场景-技术特点
产品定位 FusionInsight LibrA是企业级的大规模并行处理关系型数据库。FusionInsight LibrA采用MPP(Massive Parallel Processing)架构,支持行存储与列存储,提供PB(Petabyte,2的50次方字节)级别数据量的处理能力。 FusionInsight LibrA在核…...
Linux性能优化--性能工具:磁盘I/O
6.0 概述 本章介绍的性能工具能帮助你评估磁盘I/O子系统的使用情况。这些工具可以展示哪些磁盘或分区已被使用,每个磁盘处理了多少I/O,发给这些磁盘的I/O请求要等多久才被处理。 阅读本章后,你将能够: 确定系统内磁盘I/O的总量和类型(读/写…...
Archive Team: The Twitter Stream Grab
该集合不再更新,应被视为静态数据集。 从一般 Twitter 流中抓取的 JSON 的简单集合,用于研究、历史、测试和记忆的目的。这是“Spritzer”版本,最轻、最浅的 Twitter 抓取。不幸的是,我们目前无法访问流的洒水器或花园软管版本。 …...
Vue-props配置功能
Vue-props配置功能 props概述 功能:接收从其他组件传过来的数据,将数据从静态转为动态注意: 同一层组件不能使用props,必须是父组件传子组件的形式。父组件传数据,子组件接收数据。不能什么数据都接收,可…...
iMazing 3中文版功能介绍免费下载安装教程
iMazing 3中文版免费下载是一款兼容Win和Mac的iOS设备管理软件。iMazing 3能够将音乐、文件、消息和应用等数据从任何 iPhone、iPad 或 iPod 传输到 Mac 或 PC 上。 使用iMazing 3独特的 iOS 备份功能保证数据安全:设定自动无线备份时间并支持快照;将备份保存到外接驱动器和网…...
给课题组师弟师妹的开荒手册(终篇)
0 写在前面 终于,在结束收尾工作后敲下了开荒手册的终篇,自己三年研究生生活过的离理想中的完美还差很多,不过胜在完整,哈哈,小满胜万全嘛。希望以自己不太完美的经历为例,抛我的砖,引师弟师妹…...
wordpress文章没缩略图/培训网站推广
现在的上班族,都是依靠电脑在办公的,所以每天接收到的电子文件有很多,这些都跟自己的工作息息相关,所以一般都是需要保存在电脑里面的,但是电脑就真的很安全吗?能确保数据的安全吗? 其实电脑虽然…...
做彩票网站收费标准/企业网站seo排名优化
Linux下的链接器支持一个强大的库打桩(library interpositioning),允许你拦截对系统标准库中某个目标函数的调用,取而代之执行自己的包装函数。它可以给我们带来两个好处,一是通过添加某些语句,可以追踪自己…...
小程序的类型有哪些/seo收费低
今天心血来潮看一下spring监控 访问/beans 等敏感的信息时候报错Tue Mar 07 21:18:57 GMT08:00 2017 There was an unexpected error (typeUnauthorized, status401). Full authentication is required to access this resource.application.properties添加配置参数manage…...
商城网站怎么做的/seo营销怎么做
大型宾馆无线解决方案疑问 回复:7 阅读:2782009-08-23 11:49:53 情况如下:一个宾馆有五栋楼,已经装修好!有会议室,茶艺,客房,餐饮大楼,基本上齐全!大约有5…...
美观网站建设物美价廉/2022搜索引擎
WCF技术剖析之八:ClientBase<T>中对ChannelFactory<T>的缓存机制 原文:WCF技术剖析之八:ClientBase<T>中对ChannelFactory<T>的缓存机制和传统的分布式远程调用一样,WCF的服务调用借助于服务代理(Service…...
博罗企业网站建设/广州seo推广营销
在MySQL中, 如果显示的输入密码去登录的话, 就会有一个Warning显示出来, 提醒这种使用方式会不安全, 信息如下: [Warning] Using a password on the command line interface can be insecure. 如何去除,三种方式: 第一种方式: mysql_config_editor mys…...