基于马尔可夫随机场的图像去噪算法matlab仿真
目录
1.算法运行效果图预览
2.算法运行软件版本
3.部分核心程序
4.算法理论概述
4.1、马尔可夫随机场的基本原理
4.2、基于马尔可夫随机场的图像去噪算法
5.算法完整程序工程
1.算法运行效果图预览
原图:

加入噪声的图像:

滤波后的图像

迭代过程:


2.算法运行软件版本
matlab2022a
3.部分核心程序
clc;
clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
I0 = imread('test0.bmp');
I1 = I0;
Ibw = 2*im2bw(I0)-1;
I11 = Ibw;figure;
imshow(Ibw)%加入噪声
In = 2*imnoise(Ibw,'salt & pepper',0.1)-1;figure;
imshow(In);%真正改变的百分比是多少
num=0;
for i=1:size(I0,1)for j=1:size(I0,2)if In(i,j)~=I11(i,j)num=num+1;endend
end
List = [0,0.1,0.02];
In2 = In;
%计算能量
Ieng = func_image_energy(In,In2,List);
In2 = In;
Ieng0 = Ieng;%迭代
figure;
for p =1:20%迭代20次perr0=[];for i=1 :size(In2,1)-1for j=1:size(In2,2)-1[In2,~,Ieng] = func_pixel(In,In2,i,j, Ieng,List);endif (Ieng - Ieng0) == 0continueenderr0=[err0,abs(Ieng - Ieng0)];endIeng0 = Ieng;
subplot(4,5,p);
imshow(In2);
title(['迭代次数:',num2str(p)]);err(p)=mean(err0);
endfigure;
semilogy(err,'b-o');
grid on
xlabel('迭代次数');
ylabel('error');figure;
imshow(In2);
0074
4.算法理论概述
马尔可夫随机场(Markov Random Field,简称MRF)是一种用于图像处理的统计模型。它在图像去噪、分割和识别等方面有着广泛的应用。图像去噪是图像处理中的一个重要问题,旨在从噪声污染的图像中恢复出原始图像。马尔可夫随机场为这一问题提供了一个有效的解决方案。本文将详细介绍基于马尔可夫随机场的图像去噪算法的原理和数学公式。
4.1、马尔可夫随机场的基本原理
马尔可夫随机场是一种概率图模型,用于建模具有随机变量之间相互作用的问题。在图像去噪中,马尔可夫随机场将图像中的每个像素看作一个随机变量,并建模像素之间的相互作用。这种相互作用可以通过能量函数来表示。马尔可夫随机场的目标是找到一个配置,使得能量函数的值最小。
4.2、基于马尔可夫随机场的图像去噪算法
图像去噪的目的是从噪声污染的图像中恢复出原始图像。基于马尔可夫随机场的图像去噪算法通过定义一个能量函数来实现这一目标。能量函数包含了数据项和平滑项:
数据项:衡量去噪后的图像与原始噪声图像之间的差异。
平滑项:衡量去噪后的图像中相邻像素之间的差异,以保持图像的平滑性。
具体的能量函数可以定义为:
E(x)=∑i∈IData(xi)+∑(i,j)∈ISmooth(xi,xj)E(x) = \sum_{i \in I} Data(x_i) + \sum_{(i,j) \in I} Smooth(x_i, x_j)E(x)=∑i∈IData(xi)+∑(i,j)∈ISmooth(xi,xj)
其中,xxx是去噪后的图像,III是图像中像素的索引集,Data(xi)Data(x_i)Data(xi)是数据项,衡量去噪后的像素xixi与原始噪声图像中对应像素的差异,Smooth(xi,xj)Smooth(x_i, x_j)Smooth(xi,xj)是平滑项,衡量去噪后的像素xixi与相邻像素xjxj之间的差异。
为了求解这个最优化问题,可以使用图割、置信传播等算法。这些算法能够在多项式时间内找到能量函数的最小值,从而得到去噪后的图像。
5.算法完整程序工程
OOOOO
OOO
O
相关文章:
基于马尔可夫随机场的图像去噪算法matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1、马尔可夫随机场的基本原理 4.2、基于马尔可夫随机场的图像去噪算法 5.算法完整程序工程 1.算法运行效果图预览 原图: 加入噪声的图像: 滤波后的图像 迭代过程…...
【综合类型第 39 篇】HTTP 状态码详解
这是【综合类型第 39 篇】,如果觉得有用的话,欢迎关注专栏。 注: 本篇博客只是在「阿里云开发者社区版 HTTP 状态码详解」中按自己的写作风格做了断句,归纳整理,方便查看和阅读。 尊重原创,原文链接&…...
win10 hosts文件修改不生效
解决办法可以参考:修改hosts 不生效? 三种方法解决...
网络库OKHttp(1)流程+拦截器
序、慢慢来才是最快的方法。 背景 OkHttp 是一套处理 HTTP 网络请求的依赖库,由 Square 公司设计研发并开源,目前可以在 Java 和 Kotlin 中使用。对于 Android App 来说,OkHttp 现在几乎已经占据了所有的网络请求操作。 OKHttp源码官网 版…...
关于 Invalid bound statement (not found): 错误的解决
关于 Invalid bound statement not found: 错误的解决 前言错误原因解决方法1. 检查SQL映射文件2. 检查MyBatis配置3. 检查SQL语句4. 检查命名约定5. 清除缓存6. 启用日志记录 重点注意 结语 我是将军我一直都在,。! 前言 当开发Java Spring Boot应用程…...
深入理解强化学习——智能体的类型:有模型强化学习智能体与免模型强化学习智能体
分类目录:《深入理解强化学习》总目录 根据智能体学习的事物不同,我们可以把智能体进行归类。基于价值的智能体(Value-based agent)显式地学习价值函数,隐式地学习它的策略。策略是其从学到的价值函数里面推算出来的。…...
vue项目获得开源代码之后跳过登录界面
readme运行 进入到账号和密码 找到main.js 比如说,以上这段代码 剩下next()就成功进入了...
WPS、Excel表格增加一列,序列1到任意大小 / 填充某个范围的数字到列
Excel添加一列递增的数字方法有如下: 一、最常用的,使用鼠标放到右下角下拉增加 1、选中起始框的右下角,直到显示黑色实心十字 2、一直向下拖动 3、成功 这种填充方式是最常用的,100以内都可以轻松瞬间完成 1~100填充 但是如果…...
在 rider 里用配置 Perforce(P4)的注意事项
整个配置界面里,关键就配2处位置,但是都有些误导性。 1是连接形参的4个参数都得填,字符集看你项目的要求,这里工作区其实指的是你的工作空间,还不如显示英文的 Workspace 呢,搞得我一开始没填,…...
在Spring中,标签管理的Bean中,为什么使用@Autowired自动装配修饰引用类(前提条件该引用类也是标签管理的Bean)
Autowired是Spring框架的一个注解,它可以用来完成自动装配。 自动装配是Spring框架的一个特性,它可以避免手动去注入依赖,而是由框架自动注入。这样可以减少代码的重复性和提高开发效率。 在使用Autowired注解时,Spring会自动搜…...
俄罗斯YandexGPT 2在国家考试中获得高分;OpenAI API开发者快速入门指南
🦉 AI新闻 🚀 俄罗斯YandexGPT 2聊天机器人成功在国家考试中获得高分 摘要:俄罗斯YandexGPT 2聊天机器人通过国家统一考试文学科目,以55分的加权分数成功进入大学。Yandex团队强调他们在开发过程中确保数据库不包含任何关于统考…...
Nginx 同一端口下部署多个 Vue3 项目
前言 前端多项目部署到 Nginx 的同一监听端口下的解决方案,项目由一个主项目和多个子项目组成,主项目和子项目都是单独打包。 主子项目之间是使用的腾讯开源的无界(WebComponent 容器 iframe 沙箱)前端框架,能够完善…...
计算机毕业设计 无人智慧超市管理系统的设计与实现 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试
🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...
js构造函数和原型链
以下是一个简单的JS原型链代码示例: function Person(name, age) {this.name name;this.age age; }Person.prototype.sayHello function() {console.log(Hello, Im ${this.name} and Im ${this.age} years old.); }let person1 new Person(Alice, 20);person1.…...
python中matrix()矩阵和array()数组(待完善)
参考:python矩阵中matrix()和array()函数区别-CSDN博客 区别: 维度:ndarray可以是多维的,包括1D、2D、3D等,而matrix只能是2维的,也就是矩阵。数据类型:ndarray的数据类型可以不一致…...
设计海报都有哪些好用的软件推荐
在新媒体时代,设计在各个方面都是不可分割的。它最初是设计师的工作,并逐渐成为新媒体编辑的必要技能。 网页内容需要图片和文字,应用程序需要独特的风格基调,人们更喜欢分享视频和图片,而不是简单的文本。因此&#…...
Arcgis中像元值变化问题,拉伸显示的是否为实际像元值范围?
Arcgis中合并栅格但像元值变化 问题描述 这是四幅栅格,范围都在-1-9之间,怀疑这个范围是否是真实的范围。因为经常听到同学说放到arcgis拉伸显示之后,值变化了,所以研究一下。 原因 可以打开ENVI的像元快速统计工具ÿ…...
oracle库中数据利用datax工具同步至mysql库
查看oracle版本 $sqlplus aaa/aaaa192.168.1.1/lcfaSQL*Plus: Release 19.0.0.0.0 - Production on Tue Oct 17 15:56:46 2023 Version 19.15.0.0.0Copyright (c) 1982, 2022, Oracle. All rights reserved.Last Successful login time: Tue Oct 17 2023 15:56:03 08:00Conne…...
【Unity HDRP渲染管线下的WorleyUtilities文件,“Hash”函数】
Unity HDRP内置文件WorleyUtilities WorleyUtilities文件路径如下:文件代码如下然后转译到ShaderLab中:存档:WorleyUtilities文件路径如下: D:…\Library\PackageCache\com.unity.render-pipelines.high-definition@14.0.8\Runtime\Lighting\VolumetricClouds\WorleyUtili…...
前端跨域问题解决
一、同源策略 同源策略是一个重要的安全策略,它用于限制一个Origin的文档或者它加载的脚本如何能与另一个源的资源进行交互。它能帮助阻隔恶意文档,减少可能被攻击的媒介。 Origin:指web文档的来源,Web 内容的来源取决于访问的U…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
