当前位置: 首页 > news >正文

理论五:控制反转、依赖反转、依赖注入,这三者有何区别和联系?

关于SOLID原则,我们已经学过单一职责、开闭、里式替换、接口隔离这四个原则。今天,我们再来学习最后一个原则:依赖反转原则。在前面几节课中,我们讲到,单一职责原则和开闭原则的原理比较简单,但是,想要在实践中用好却比较难。而今天我们要讲到的依赖反转原则正好相反。这个原则用起来比较简单,但概念理解起来比较难。比如,下面这几个问题,你看看能否清晰地回答出来:

  • “依赖反转”这个概念指的是“谁跟谁”的“什么依赖”被反转了?“反转”两个字该如何理解?

  • 我们还经常听到另外两个概念: “控制反转”和“依赖注入”。这两个概念跟“依赖反转”有什么区别和联系呢?它们说的是同一个事情吗?

  • 如果你熟悉Java语言,那Spring框架中的IOC跟这些概念又有什么关系呢?

看了刚刚这些问题,你是不是有点懵?别担心,今天我会带你将这些问题彻底搞个清楚。之后再有人问你,你就能轻松应对。话不多说,现在就让我们带着这些问题,正式开始今天的学习吧!

控制反转(IOC)

在讲“依赖反转原则”之前,我们先讲一讲“控制反转”。控制反转的英文翻译是Inversion Of Control,缩写为IOC。此处我要强调一下,如果你是Java工程师的话,暂时别把这个"IOC"跟Spring框架的IOC联系在一起。关于Spring的IOC,我们待会儿还会讲到。

我们先通过一个例子来看一下,什么是控制反转。

public class UserServiceTest {public static boolean doTest() {}
public static void main(String[] args) {//这部分逻辑可以放到框架中if (doTest ()) {System.out.println("Test succeed.");} else {System.out.println("Test failed.");}
}

在上面的代码中,所有的流程都由程序员来控制。如果我们抽象出一个下面这样一个框架,我们再来看,如何利用框架来实现同样的功能。具体的代码实现如下所示:

public abstract class TestCase {public void run() {if (doTest()) {System.out.println("Test succeed.");} else {System.out.println("Test failed.");}public abstract boolean doTest();
}
public class JunitApplication {private static final List testCases = new ArrayList<>();public static void register(TestCase testCase) {testCases.add(testCase);}public static final void main(String[] args) {for (TestCase case: testCases) {case.run();}}
}

把这个简化版本的测试框架引入到工程中之后,我们只需要在框架预留的扩展点,也就是TestCase类中的doTest()抽象函数中,填充具体的测试代码就可以实现之前的功能了,完全不需要写负责执行流程的main()函数了。具体的代码如下所示:

public class UserServiceTest extends TestCase {@Overridepublic boolean doTest() {// 注册操作还可以通过配置的方式来实现,不需要程序员显示调用register()JunitApplication.register(new UserServiceTest());}
}

刚刚举的这个例子,就是典型的通过框架来实现“控制反转”的例子。框架提供了一个可扩展的代码骨架,用来组装对象、管理整个执行流程。程序员利用框架进行开发的时候,只需要往预留的扩展点上,添加跟自己业务相关的代码,就可以利用框架来驱动整个程序流程的执行。

这里的“控制”指的是对程序执行流程的控制,而“反转”指的是在没有使用框架之前,程序员自己控制整个程序的执行。在使用框架之后,整个程序的执行流程可以通过框架来控制。流程的控制权从程序员“反转”到了框架。

实际上,实现控制反转的方法有很多,除了刚才例子中所示的类似于模板设计模式的方法之外,还有马上要讲到的依赖注入等方法,所以,控制反转并不是一种具体的实现技巧,而是一个比较笼统的设计思想,一般用来指导框架层面的设计。

依赖注入(DI)

接下来,我们再来看依赖注入。依赖注入跟控制反转恰恰相反,它是一种具体的编码技巧。依赖注入的英文翻译是

Dependency Injection,缩写为DI。对于这个概念,有一个非常形象的说法,那就是:依赖注入是一个标价25美元,实际上只值5美分的概念。也就是说,这个概念听起来很“高大上”,实际上,理解、应用起来非常简单。这

那到底什么是依赖注入呢?我们用一句话来概括就是:不通过new0的方式在类内部创建依赖类对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递(或注入)给类使用。

我们还是通过一个例子来解释一下。在这个例子中,Notification类负责消息推送,依赖MessageSender类实现推送商品促销、验证码等消息给用户。我们分别用依赖注入和非依赖注入两种方式来实现一下。具体的实现代码如下所示:

// 非依赖注入实现方式
public class Notification{private MessageSender messageSender;public Notification() {this.messageSender = new MessageSender(); //此处有点像hardcode}public void sendMessage(String cellphone, String message){//...省略校验逻辑等...this.messageSender.send(cellphone, message);}
}public class MessageSender {public void send(String cellphone, String message) {//...}
}
// 使用Notification
Notification notification = new Notification();
// 依赖注入的实现方式
public class Notification{private MessageSender messageSender;//通过构造函数将messageSender传递进来public Notification(MessageSender messageSender) {this.messageSender = messageSender;}public void sendMessage(String cellphone, String message){//...省略校验逻辑等...this.messageSender.send(cellphone, message);}
}
//使用Notification
MessageSender messageSender = new MessageSender();
Notification notification = new Notification(messageSender);

通过依赖注入的方式来将依赖的类对象传递进来,这样就提高了代码的扩展性,我们可以灵活地替换依赖的类。这一点在我们之前讲"并闭原则"的时候也提到过。当然,上面代码还有继续优化的空间,我们还可以把MessageSender定义成接口,基于接口而非实现编程。改造后的代码如下所示:

public class Notificationprivate MessageSender messageSender;public Notification(MessageSender messageSender){this.messageSender = messageSender;}public void sendMessage(String cellphone, String message){this.messageSender.send(cellphone, message);}
}
public interface MessageSender {void send(String cellphone, String message);
}// 短信发送类
public class SmsSender implements MessageSender{@Overridepublic void send(String cellphone, String message){//....}
}
// 站内信发送续
public class InboxSender implements MessageSender@Overridepublic void send(String cellphone, String message) {//....}
}
//使用Notification
MessageSender messageSender = new SmsSender();
// 会讲到,它是编写可测试性代码最有效的手段。
Notification notification = new Notification(messageSender);

实际上,你只需要掌握刚刚举的这个例子,就等于完全掌握了依赖注入。尽管依赖注入非常简单,但却非常有用,在后面的章节中,我们会讲到,它是编写可测试代码最有效代码的手段。

依赖注入框架(DI Framework)

弄懂了什么是“依赖注入”,我们再来看一下,什么是“依赖注入框架”。我们还是借用刚刚的例子来解释。

在采用依赖注入实现的Notification类中,虽然我们不需要用类似hard code的方式,在类内部通过new来创建MessageSender对象,但是,这个创建对象、组装(或注入)对象的工作仅仅是被移动到了更上层代码而已,还是需要我们程序员自己来实现。具体代码如下所示:

public class Demo {
public static final void main(String[] args) {MessageSender sender = new SmsSender();//创建对象Notification notification = new Notification(sender);//依赖注入notification.sendMessage("13918942177","短信验证码:2346");
}

在实际的软件开发中,一些项目可能会涉及几十、上百、甚至几百个类,类对象的创建和依赖注入会变得非常复杂。如果这部分工作都是靠程序员自己写代码来完成,容易出错且开发成本也比较高。而对象创建和依赖注入的工作,本身跟具体的业务无关,我们完全可以抽象成框架来自动完成。

你可能已经猜到,这个框架就是“依赖注入框架”。我们只需要通过依赖注入框架提供的扩展点,简单配置一下所有需要创建的类对象、类与类之间的依赖关系,就可以实现由框架来自动创建对象、管理对象的生命周期、依赖注入等原本需要程序员来做的事情。

实际上,现成的依赖注入框架有很多,比如Google Guice,Java Spring、Pico Container, Butterfly Container等。不过,如果你熟悉Java Spring框架,你可能会说, Spring框架自己声称是控制反转容器(Inversion Of Control Container) 。

实际上,这两种说法都没错。只是控制反转容器这种表述是一种非常宽泛的描述,DI依赖注入框架的表述更具体、更有针对性。因为我们前面讲到实现控制反转的方式有很多,除了依赖注入,还有模板模式等,而Spring框架的控制反转主要是通过依赖注入来实现的。不过这点区分并不是很明显,也不是很重要,你稍微了解一下就可以了。

依赖反转原则(DIP)

前面讲了控制反转、依赖注入、依赖注入框架,现在,我们来讲一讲今天的主角:依赖反转原则。依赖反转原则的英文翻译是Dependency Inversion Principle,缩写为DIP。中文翻译有时候也叫依赖倒置原则。

为了追本溯源,我先给出这条原则最原汁原味的英文描述:

High-level modules shouldn't depend on low-level modules. Both modules should depend on abstractions. In addition, abstractions shouldn't depend on details. Details depend onabstractions.

我们将它翻译成中文,大概意思就是:高层模块(high-level modules)不要依赖低层模块(low-level) 。高层模块和低层模块应该通过抽象(abstractions)来互相依赖。除此之外,抽象(abstractions)不要依赖具体实现细节(details) ,具体实现细节(details)依赖抽象(abstractions) 。所谓高层模块和低层模块的划分,简单来说就是,在调用链上,调用者属于高层,被调用者属于低层。在平时的业务代码开发中,高层模块依赖底层模块是没有任何问题的。实际上,这条原则主要还是用来指导框架层面的设计,跟前面讲到的控制反转类似。我们拿Tomcat这个Servlet容器作为例子来解释一下。

Tomcat是运行Java Web应用程序的容器。我们编写的Web应用程序代码只需要部署在Tomcat容器下,便可以被Tomcat容器调用执行。

按照之前的划分原则, Tomcat就是高层模块,我们编写的Web应用程序代码就是低层模块。Tomcat和应用程序代码之间并没有直接的依赖关系,两者都依赖同一个“抽象”,也就是Servlet规范。Servlet规范不依赖具体的Tomcat容器和应用程序的实现细节,而Tomcat容器和应用程序依赖Servlet规范。

重点回顾

好了,今天的内容到此就讲完了。我们一块来总结回顾一下,你需要掌握的重点内容。

1.控制反转

实际上,控制反转是一个比较笼统的设计思想,并不是一种具体的实现方法,一般用来指导框架层面的设计。这里所说的“控制”指的是对程序执行流程的控制,而“反转”指的是在没有使用框架之前,程序员自己控制整个程序的执行。在使用框架之后,整个程序的执行流程通过框架来控制。流程的控制权从程序员“反转”给了框架。

2.依赖注入

依赖注入和控制反转恰恰相反,它是一种具体的编码技巧。我们不通过new的方式在类内部创建依赖类的对象,而是将依赖的类对象在外部创建好之后,通过构造函数、函数参数等方式传递(或注入)给类来使用。

3.依赖注入框架

我们通过依赖注入框架提供的扩展点,简单配置一下所有需要的类及其类与类之间依赖关系,就可以实现由框架来自动创建对象、管理对象的生命周期、依赖注入等原本需要程序员来做的事情。

4.依赖反转原则

依赖反转原则也叫作依赖倒置原则。这条原则跟控制反转有点类似,主要用来指导框架层面的设计。高层模块不依赖低层模块,它们共同依赖同一个抽象。抽象不要依赖具体实现细节,具体实现细节依赖抽象。

课堂讨论

从Notification这个例子来看,“基于接口而非实现编程”跟“依赖注入”,看起来非常类似,那它俩有什么区别和联系呢?

相关文章:

理论五:控制反转、依赖反转、依赖注入,这三者有何区别和联系?

关于SOLID原则,我们已经学过单一职责、开闭、里式替换、接口隔离这四个原则。今天,我们再来学习最后一个原则:依赖反转原则。在前面几节课中,我们讲到,单一职责原则和开闭原则的原理比较简单,但是,想要在实践中用好却比较难。而今天我们要讲到的依赖反转原则正好相反。这个原则…...

读书笔记//《数据分析之道》

出版时间&#xff1a;2022年 作者曾在互联网大厂做数据分析。从举例可以洞见作者的工作经历。 点评&#xff1a;作者在数据分析领域非常资深&#xff0c;尝试在书中提供一个数据分析工作框架参考。书本内容有点感觉是ppt的集合&#xff0c;辅以案例说明。不过&#xff0c;干货还…...

1个串口用1根线实现多机半双工通信+开机控制电路

功能需求&#xff1a; 主机使用一个串口&#xff0c;与两个从机进行双向通信&#xff0c;主机向从机发送数据&#xff0c;从机能够返回数据&#xff0c;由于结构限制&#xff0c;主机与从机之间只有3根线&#xff08;电源、地、数据线&#xff09;&#xff0c;并且从机上没有设…...

KUKA机器人外部自动运行模式的相关信号配置

KUKA机器人外部自动运行模式的相关信号配置 通过例如PLC这样的控制器来进行外部自动运行控制时,运行接口向机器人控制系统发出机器人进程的相关信号(例如运行许可、故障确认、程序启动等),机器人向上级控制系统发送有关运行状态和故障状态的信息。 必需的配置:  配置CEL…...

【RabbitMQ笔记02】消息队列RabbitMQ七种模式之最简单的模式

这篇文章&#xff0c;主要介绍RabbitMQ消息队列中七种模式里面最简单的使用模式。 目录 一、消息队列的使用 1.1、消息队列七种模式 1.2、最简单的模式使用 &#xff08;1&#xff09;引入依赖 &#xff08;2&#xff09;编写生产者 &#xff08;3&#xff09;编写消费者…...

Spring MVC 源码- RequestToViewNameTranslator 组件

RequestToViewNameTranslator 组件RequestToViewNameTranslator 组件&#xff0c;视图名称转换器&#xff0c;用于解析出请求的默认视图名。就是说当 ModelAndView 对象不为 null&#xff0c;但是它的 View 对象为 null&#xff0c;则需要通过 RequestToViewNameTranslator 组件…...

Linux--TCP编程--0216 17

观前提示&#xff1a;本篇博文的一些接口需要前几篇博文实现的 线程池的实现Liunx--线程池的实现--0208 09_Gosolo&#xff01;的博客-CSDN博客 线程池的单例模式Linux--线程安全的单例模式--自旋锁--0211_Gosolo&#xff01;的博客-CSDN博客 1.TCP编程需要用的接口 创建 sock…...

关于设计模式的记录

############### 先弄清楚类模型的关系 ############### 万物的抽象关系 ############### 1.组合 composition实菱形 实线 无填充箭头整体与部分的关系同生共死代码体现&#xff1a;成员变量如&#xff1a;生命体与器官&#xff0c;http请求&#xff08;请求行&#xff0c;请求…...

Lambda-常见的函数式接口

如果需要使用Lambda接口&#xff0c;就必须要有一个函数式接口 函数式接口是有且仅有一个抽象方法的接口, 对应的注解是FunctionalInterface Java中内置的常见函数式接口如下: 1.Runnable/ Callable /*** The <code>Runnable</code> interface should be implem…...

P1196 [NOI2002] 银河英雄传说 带权并查集

[NOI2002] 银河英雄传说 题目背景 公元 580158015801 年&#xff0c;地球居民迁至金牛座 α\alphaα 第二行星&#xff0c;在那里发表银河联邦创立宣言&#xff0c;同年改元为宇宙历元年&#xff0c;并开始向银河系深处拓展。 宇宙历 799799799 年&#xff0c;银河系的两大军…...

【项目实战】快来入门Groovy的基础语法吧

一、Groovy是什么? 1.1 与Java语言的关系 下一代的Java 语言,增强Java平台的唯一的脚本语言跟java一样,它也运行在 JVM 中。支持Java平台,无缝的集成了Java 的类和库;Groovy是一种运行在JVM上的动态语言,跑在JVM中的另一种语言编译后的.groovy也是以class的形式出现的。1…...

Mybatis中的动态SQL

Mybatis中的动态SQL 当存在多条件查询的SQL时&#xff0c;当用户某个条件的属性没有写时&#xff0c;就会存在问题&#xff0c;在test中则不能很好的运行 所以Mybatis提出了动态SQL。 即判断用户是否输入了某个属性 动态SQL中的一些问题 方法一 这个里的and是为了确保if条…...

VUE常用API

1.$set数据变了&#xff0c;视图没变 this.$set(targe&#xff0c;key&#xff0c;value)2.$nextTick:返回参数[函数]。是一个异步的&#xff0c;功能获得更新后DOM$nextTick(callback){return Promise.resolve().then(()>{callback();}) }3.$refs获取dom4.$el获取当前组件根…...

25 openEuler管理网络-使用nmcli命令配置ip

文章目录25 openEuler管理网络-使用nmcli命令配置ip25.1 nmcli介绍25.2 设备管理25.2.1 连接到设备25.2.2 断开设备连接25.3 设置网络连接25.3.1 配置动态IP连接25.3.1.1 配置IP25.3.1.2 激活连接并检查状态25.3.2 配置静态IP连接25.3.2.1 配置IP25.3.2.2 激活连接并检查状态25…...

如何安装和使用A-ops工具?

一、pip配置 1.配置信任域 ​ pip3 config set global.trusted-host mirrors.tools.huawei.com2.配置pip源的url地址pip3 config set global.index-url http://mirrors.tools.huawei.com/pypi/simple 二、npm安装及配置 npm -v检测系统有无安装npm,如果没有的话需要配置ope…...

MySql数据库环境部署

MySql基础与Sql数据库概述基础环境的建立MYSQL数据库的连接方法MySql的默认数据库数据库端口号数据库概述 数据库&#xff08;DataBase&#xff0c;DB)∶存储在磁带、磁盘、光盘或其他外存介质上、按定结构组织在一起的相关数据的集合。数据库管理系统〈DataBase Management S…...

极品笔记,阿里P7爆款《K8s+Jenkins》技术笔记,职场必备

前些日子从阿里的朋友那里取得这两份K8sJenkins的爆款技术笔记&#xff1a;《K8S(kubernetes)学习指南》《Jenkins持续集成从入门到精通》&#xff0c;非常高质量的干货&#xff0c;我立马收藏&#xff01; 而今天咱们文章的主角就是这非常之干货的技术笔记&#xff1a;K8SJenk…...

数据结构:各种排序方法的综合比较

排序方法的选用应视具体场合而定。一般情况下考虑的原则有:(1)待排序的记录个数 n;(2)记录本身的大小;(3)关键字的分布情况:(4)对排序稳定性的要求等。 1.时间性能 (1) 按平均的时间性能来分,有三类排序方法: 时间复杂度为 O(nlogn)的方法有:快速排序、堆排序和归并排序,其中…...

【设计模式】 策略模式介绍及C代码实现

【设计模式】 策略模式介绍及C代码实现 背景 在软件构建过程中&#xff0c;某些对象使用的算法可能多种多样&#xff0c;经常改变&#xff0c;如果将这些算法都编码到对象中&#xff0c;将会使对象变得异常复杂&#xff0c;而且有时候支持不使用的算法也是一个性能负担。 如何…...

【数据库】第二章 关系数据库

第二章 关系数据库 2.1关系数据结构及形式化定义 关系 域&#xff08;domain) :域是一组具有相同数据类型的值的集合&#xff0c;可以取值的个数叫基数 笛卡尔积 &#xff1a;一个记录叫做一个元组&#xff08;tuple),元组中每一个属性值&#xff0c;叫一个分量 基数&…...

oracle和mysql的分页

oracle的分页&#xff1a;rownum 注意:&#xff1a; 对 ROWNUM 只能使用 < 或 <, 用 、 >、 > 都不能返回任何数据。 rownum是对结果集的编序排列&#xff0c;始终是从1开始&#xff0c;所以rownum直接使用时不允许使用>、> 所以当查询中间部分的信息时&…...

深拷贝与浅拷贝的理解

浅拷贝的理解浅拷贝的话只会拷贝基本数据类型&#xff0c;例如像string、Number等这些&#xff0c;类似&#xff1a;Object、Array 这类的话拷贝的就是对象的一个指针(通俗来讲就是拷贝一个引用地址&#xff0c;指向的是一个内存同一份数据)&#xff0c;也就是说当拷贝的对象数…...

Shell变量

一、变量分类 根据作用域分三种 &#xff08;一&#xff09;只在函数内有效&#xff0c;叫局部变量 &#xff08;二&#xff09;只在当前shell进程中有效&#xff0c;叫做全局变量 &#xff08;三&#xff09;在当前shell进程与子进程中都有效&#xff0c;叫做环境变量 shell进…...

Android 8请求权限时弹窗BUG

弹窗BUG 应用使用requestPermissions申请权限时&#xff0c;系统会弹出一个选择窗口&#xff0c;可进行允许或拒绝&#xff0c; 此窗口中有一个”不再询问“的选择框&#xff0c; ”拒绝”及“允许”的按钮。 遇到一个Bug,单点击“不再询问”&#xff0c;“允许”这个按钮会变…...

路漫漫:网络空间的监管趋势

网络空间是“以相互依存的网络基础设施为基本架构&#xff0c;以代码、信息与数据的流动为环境&#xff0c;人类利用信息通讯技术与应用开展活动&#xff0c;并与其他空间高度融合与互动的空间”。随着信息化技术的发展&#xff0c;网络空间日益演绎成为与现实人类生存空间并存…...

洛谷 P1208 [USACO1.3]混合牛奶 Mixing Milk

最后水一篇水题题解&#xff08;实在太水了&#xff09; # [USACO1.3]混合牛奶 Mixing Milk ## 题目描述 由于乳制品产业利润很低&#xff0c;所以降低原材料&#xff08;牛奶&#xff09;价格就变得十分重要。帮助 Marry 乳业找到最优的牛奶采购方案。 Marry 乳业从一些奶农手…...

数据库的基本查询

注意&#xff1a;LIMIT的两个参数&#xff0c;第一个是起始位置&#xff0c;第二个是一次查询到多少页。注意&#xff1a;什么类型的数字都是可以排序的。日期的降序是从现在到以前&#xff0c;MySQL ENUM值如何排序&#xff1f;在MYSQL中&#xff0c;我们知道每个ENUM值都与一…...

10 分钟把你的 Web 应用转为桌面端应用

在桌面端应用上&#xff0c;Electron 也早已做大做强&#xff0c;GitHub桌面端、VSCode、Figma、Notion、飞书、剪映、得物都基于此。但最近后起之秀的 Tauri 也引人注目&#xff0c;它解决了 Electron 一个大的痛点——打包产物特别大。 我们知道 Electron 基于谷歌内核 Chro…...

Delphi RSA加解密(二)

dll开发环境: Delphi XE 10.1 Berlin exe开发环境: Delphi 6 前提文章: Delphi RSA加解密(一) 目录 1. 概述 2. 准备工作 2.1 下载DEMO程序 2.2 字符编码说明 3. Cryption.dll封装 3.1 接口概况 3.2 uPub.pas单元代码 3.3 uInterface.pas单元代码 3.4 特别注意 4. 主程序…...

pytorch 深度学习早停设置

当你设置早停的时候你需要注意的是你可能得在几个epoch后才开始判断早停。 早停参数设置 早停&#xff08;Early Stopping&#xff09;是一种常用的防止深度学习模型过拟合的方法。早停的设置需要根据具体情况进行调整&#xff0c;常见的做法是在模型训练过程中使用验证集&am…...