阅读笔记9——DenseNet
一、DenseNet
DenseNet的网络结构如图1-1所示,其核心是Dense Block模块,Dense Block中的一个黑点就代表一个卷积模块(不是一个卷积层,而是DenseNet提出的一个BottleNeck模块,后文有讲解),每条黑线都代表着数据的流动。

- DenseNet的每一个Dense Block内保持特征图的尺寸一致,目的是为了直接进行Concat操作,因此,DenseNet被分成了多个Dense Block(每个Dense Block内不能改变特征图大小,但整个DenseNet为了提取特征,需要减小特征图尺寸,即每个Dense Block内特征图尺寸一致,不同Dense Block内特征图尺寸不一致),Dense Block的数量一般为4。
- 两个相邻的Dense Block之间的部分被称为Transition层,具体包括BN、ReLU、1×1卷积、2×2平均池化。其中,1×1卷积的作用是降维,2×2平均池化的作用是降低特征图的尺寸。
二、Dense Block
Dense Block的实现细节如图2-1所示,每一个Dense Block由若干个BottleNeck卷积模块组成,BottleNeck由BN、ReLU、1×1卷积、BN、ReLU、3×3卷积顺序组成。

-
每一个BottleNeck的输出通道数是相同的(每个BottleNeck模块最后3×3卷积的输出通道数相同),例如图2-1中的32,每经过一次Concat,特征图的通道数就增加32,因此这里的32也被称为GrowthRate。(假设对于一个Dense Block来说,输入通道数为cinc_{in}cin,输出通道数为coutc_{out}cout,该Dense Block内有nnn个BottleNeck,则cout=cin+n×GrowthRatec_{out}= c_{in} + n\times GrowthRatecout=cin+n×GrowthRate,图2-1可看作192=64+4×32192=64+4\times 32192=64+4×32)
-
1×1卷积的作用是固定输出通道数,避免因网络结构过深而导致特征图的通道数急剧增加(每次Concat后,通道数都会增加GrowthRate,若不使用1×1卷积降维,后续3×3卷积的参数量会急剧增加)。1×1卷积的通道数通常是GrowthRate的4倍。
三、DenseNet优势
- 密集连接的特殊网络,使得每一层都会接受其后所有层的梯度,而不是像普通卷积链式的反向传播,因此一定程度上解决了梯度消失的问题。
- 通过Concat操作使得大量特征被复用,每个曾独有的特征图的通道是较少的,因此比ResNet的参数更少且计算更高效。
相关文章:
阅读笔记9——DenseNet
一、DenseNet DenseNet的网络结构如图1-1所示,其核心是Dense Block模块,Dense Block中的一个黑点就代表一个卷积模块(不是一个卷积层,而是DenseNet提出的一个BottleNeck模块,后文有讲解),每条黑…...
PowerAutomation获取邮件附件并删除这个邮件方法
这个文章是怎么来的呢?现在不是低代码开发平台启蒙阶段嘛?笔者也有幸在工作中进行了尝试,目前也已经在实际工作中结合Python进行了使用,当然,是可以提高IT的工作效率的。需求是这样的,想从公司的EBS平台报表…...
websocket报错集锦-不断更新中
问题1:Failed to construct ‘WebSocket’: An insecure WebSocket connection may not be initiated from a page loaded over HTTPS. 问题描述 Mixed Content: The page at https://AAAAAA.com was loaded over HTTPS, but attempted to connect to the insecur…...
Spring Cloud Nacos源码讲解(七)- Nacos客户端服务订阅机制的核心流程
Nacos客户端服务订阅机制的核心流程 说起Nacos的服务订阅机制,大家会觉得比较难理解,那我们就来详细分析一下,那我们先从Nacos订阅的概述说起 Nacos订阅概述 Nacos的订阅机制,如果用一句话来描述就是:Nacos客…...
【华为OD机试模拟题】用 C++ 实现 - 对称美学(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 获得完美走位(2023.Q1) 文章目录 最近更新的博客使用说明对称美学题目输入输出示例一输入输出说明示例二输入输出说明备注Code使用说明 参加华为od机试,一定要注意不要完全背诵代码...
Go语言内存管理详解-学习笔记
1 自动内存管理 1.1 相关概念 Mutator:业务线程,分配新对象,修改对象指向关系Collector:GC线程,找到存活对象,回收死亡对象的内存空间Serial GC:只有一个collector(需要暂停&#…...
Geospatial Data Science (4): Spatial weights
Geospatial Data Science (4): Spatial weights 在本节中,我们将学习空间分析中关键部分之一的来龙去脉:空间权重矩阵。这些是结构化的数字集,用于形式化数据集中观测值之间的地理关系。本质上,给定地理的空间权重矩阵是维度 N N N 乘以 N N N 的正定矩阵,其中...
JUC-Synchronized相关内容
设计同步器的意义多线程编程中,有可能会出现多个线程同时访问同一个共享、可变资源的情况,这个资源我们称之其为临界资源;这种资源可能是:对象、变量、文件等。共享:资源可以由多个线程同时访问可变:资源可…...
【c++】文件操作(文本文件、二进制文件)
文章目录文件操作文本文件写文件读文件二进制文件写文件读文件文件操作 程序运行时产生的数据都属于临时数据,程序一旦运行结束都会被释放; 通过文件可以将数据持久化; c中对文件操作需要包含头文件 文件类型分为两种: 1、文本文…...
带你了解IP报警柱的特点
IP可视报警柱是一款室外防水紧急求助可视对讲终端。安装在学校、广场、道路人流密集和案件高发区域,当发生紧急情况或需要咨询求助时按下呼叫按钮立即可与监控中心值班人员通话,值班人员也可通过前置摄像头了解现场情况并广播喊话。IP可视报警柱的使用特…...
一步步教你电脑变成服务器,tomcat的花生壳设置(原创)
1,首先你去https://console.oray.com/这网站注册个帐号,如果注册成功它会送你一个免费域名,当然不记得也没关系,你记住你注册的 帐号跟密码,然后下载它的软件(花生壳动态域名6.0正式版)有xp跟li…...
Python 卷积神经网络 ResNet的基本编写方法
ResNet(Residual Network)是由微软亚洲研究院提出的深度卷积神经网络,它在2015年的ImageNet挑战赛上取得了第一名的好成绩。ResNet最大的特点是使用了残差学习,可以解决深度网络退化问题。在传统的深度神经网络中,随着…...
【索引】什么是索引
📔 笔记介绍 大家好,千寻简笔记是一套全部开源的企业开发问题记录,毫无保留给个人及企业免费使用,我是作者星辰,笔记内容整理并发布,内容有误请指出,笔记源码已开源,前往Gitee搜索《…...
【算法刷题】动态规划算法题型及方法归纳
动态规划特点 动态规划中每一个状态一定是由上一个状态推导出来,根据这个特点,可以在状态计算过程中,存储某一条件下的数据,当再次遍历该条件时,直接取该条件对应的数据即可,可以避免重复计算,…...
PolarDB数据库的CSN机制
背景 对postgres数据库熟悉的同学会发现在高并发场景下在获取快照处易出现性能瓶颈,其原因在于PG使用全局数组在共享内存中保存所有事务的状态,在获取快照时需要加锁以保证数据一致性。获取快照时需要持有ProcArraryLock共享锁比遍历ProcArray数组中活跃…...
使用kubeadm 部署kubernetes 1.26.1集群 Calico ToR配置
目录 机器信息 升级内核 系统配置 部署容器运行时Containerd 安装crictl客户端命令 配置服务器支持开启ipvs的前提条件 安装 kubeadm、kubelet 和 kubectl 初始化集群 (master) 安装CNI Calico 集群加入node节点 机器信息 主机名集群角色IP内…...
Servlet笔记(11):Servletcontext对象
1、什么是ServletContext ServletContext是一个全局储存空间,随服务器的生命周期变化, Cookie,Session,ServletContext的区别 Cookie: 存在于客户端的本地文本文件 Session: 存在于服务器的文本文件&#…...
EM算法是什么
EM算法是什么 EM算法(Expectation-Maximization Algorithm)是一种用于参数估计的迭代算法。它常被用于含有隐变量(latent variable)的概率模型中,例如高斯混合模型、隐马尔可夫模型等。 EM算法分为两个步骤ÿ…...
C++---线性dp---方格取数(每日一道算法2023.2.25)
注意事项: 本题属于"数字三角形"和"摘花生"两题的进阶版,建议优先看懂那两道,有助理解。 题目: 输入: 8 2 3 13 2 6 6 3 5 7 4 4 14 5 2 21 5 6 4 6 3 15 7 2 14 0 0 0输出: 67#include <cm…...
《第一行代码》 第八章:应用手机多媒体
一,使用通知 第一步,创建项目,书写布局 <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:orientation"vertical"android:layout_width"match_parent"android:layout_he…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...
spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...
