PyTorch基础(18)-- torch.stack()方法
一、方法详解
首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。
有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。
PyTorch torch.stack() method joins (concatenates) a sequence of tensors (two or more tensors) along a new dimension. It inserts new dimension and concatenates the tensors along that dimension. This method joins the tensors with the same dimensions and shape. We could also use torch.cat() to join tensors But here we discuss the torch.stack() method.
torch.stack方法用于沿着一个新的维度 join(也可称为cat)一系列的张量(可以是2个张量或者是更多),它会插入一个新的维度,并让张量按照这个新的维度进行张量的cat操作。值得注意的是:张量序列中的张量必须要有相同的shape和dimension。
Parameters
tensors:张量序列,也就是要进行stack操作的对象们,可以有很多个张量。
dim:按照dim的方式对这些张量进行stack操作,也就是你要按照哪种堆叠方式对张量进行堆叠。dim的取值范围为闭区间[0,输入Tensor的维数]
return
堆叠后的张量
只通过理论对方法进行解释说明是不够直观的,下面会通过大量的示例对torch.stack方法进行解析!
二、案例解析
2.1 案例1:2个一维tensor进行stack操作
- 程序
x = t.tensor([1,2,3,4])y = t.tensor([5,6,7,8])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)
- 运行结果
torch.Size([4])
torch.Size([4])tensor([[1, 2, 3, 4],[5, 6, 7, 8]])
torch.Size([2, 4])tensor([[1, 5],[2, 6],[3, 7],[4, 8]])
torch.Size([4, 2])
- 图解
2.2 案例2:2个二维tensor进行stack操作
- 程序
x = t.tensor([[1,2,3],[4,5,6]])y = t.tensor([[7,8,9],[10,11,12]])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)z3 = t.stack((x,y), dim=2)print(z3)print(z3.shape)
- 运行结果
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1, 2, 3],[ 4, 5, 6]],[[ 7, 8, 9],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1, 2, 3],[ 7, 8, 9]],[[ 4, 5, 6],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1, 7],[ 2, 8],[ 3, 9]],[[ 4, 10],[ 5, 11],[ 6, 12]]])
torch.Size([2, 3, 2])
- 图解
2.3 案例3:多个二维tensor进行stack操作
- 程序
x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = torch.tensor([[13,14,15],[16,17,18]])
print(x.shape)
print(y.shape)
print(z.shape)r1 = torch.stack((x,y,z),dim=0)
print(r1)
print(r1.shape)r2 = torch.stack((x,y,z),dim=1)
print(r2)
print(r2.shape)r3 = torch.stack((x,y,z),dim=2)
print(r3)
print(r3.shape)
- 运行结果
torch.Size([2, 3])
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1, 2, 3],[ 4, 5, 6]],[[ 7, 8, 9],[10, 11, 12]],[[13, 14, 15],[16, 17, 18]]])
torch.Size([3, 2, 3])tensor([[[ 1, 2, 3],[ 7, 8, 9],[13, 14, 15]],[[ 4, 5, 6],[10, 11, 12],[16, 17, 18]]])
torch.Size([2, 3, 3])tensor([[[ 1, 7, 13],[ 2, 8, 14],[ 3, 9, 15]],[[ 4, 10, 16],[ 5, 11, 17],[ 6, 12, 18]]])
torch.Size([2, 3, 3])
- 图解
2.4 案例4:2个三维tensor进行stack操作
- 程序
x = torch.tensor([[[1,2,3],[4,5,6]],[[2,3,4],[5,6,7]]])
y = torch.tensor([[[7,8,9],[10,11,12]],[[8,9,10],[11,12,13]]])
print(x.shape)
print(y.shape)
z1 = torch.stack((x,y),dim=0)
print(z1)
print(z1.shape)
z2 = torch.stack((x,y),dim=1)
print(z2)
print(z2.shape)
z3 = torch.stack((x,y),dim=2)
print(z3)
print(z3.shape)
z4 = torch.stack((x,y),dim=3)
print(z4)
print(z4.shape)
- 运行结果
torch.Size([2, 2, 3])
torch.Size([2, 2, 3])tensor([[[[ 1, 2, 3],[ 4, 5, 6]],[[ 2, 3, 4],[ 5, 6, 7]]],[[[ 7, 8, 9],[10, 11, 12]],[[ 8, 9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1, 2, 3],[ 4, 5, 6]],[[ 7, 8, 9],[10, 11, 12]]],[[[ 2, 3, 4],[ 5, 6, 7]],[[ 8, 9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1, 2, 3],[ 7, 8, 9]],[[ 4, 5, 6],[10, 11, 12]]],[[[ 2, 3, 4],[ 8, 9, 10]],[[ 5, 6, 7],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1, 7],[ 2, 8],[ 3, 9]],[[ 4, 10],[ 5, 11],[ 6, 12]]],[[[ 2, 8],[ 3, 9],[ 4, 10]],[[ 5, 11],[ 6, 12],[ 7, 13]]]])
torch.Size([2, 2, 3, 2])
- 图解
参考文献
[1]https://blog.csdn.net/flyingluohaipeng/article/details/125034358
[2]https://www.geeksforgeeks.org/python-pytorch-stack-method/
[3]https://www.bing.com/search?q=torch.stack&form=ANNTH1&refig=653766bda2d540398dfb83d482cd33cd
相关文章:

PyTorch基础(18)-- torch.stack()方法
一、方法详解 首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。 有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。 PyTorch torch.stack() method joins (concaten…...

从lc560“和为 K 的子数组“带你认识“前缀和+哈希表“的解题思路
1 前缀和哈希表解题的几道题目:建议集中练习 560. 和为 K 的子数组:https://leetcode.cn/problems/subarray-sum-equals-k/ 1248. 统计「优美子数组」: https://leetcode.cn/problems/count-number-of-nice-subarrays/ 1249. 和可被 K 整除的子数组(利用…...

c:变参函数:汇编解析;va_list;marco 宏:__VA_ARGS__
文章目录 参考gcc 内部的宏定义代码汇编调用在 SEI CERT C Coding Standard 这个标准里示例实例宏里的使用 参考 https://git.sr.ht/~gregkh/presentation-security/blob/3547183843399d693c35b502cf4a313e256d0dd8/security-stuff.pdf gcc 内部的宏定义 宏定义:…...

eclipse安装教程(2021版)
第一步:下载JDK (下载地址) Java SE - Downloads 第二步 根据自己电脑的系统,选择相应的版本x64代表64位,x86代表32位。点击相应的JDK进行下载 点击之后会出现一个对话框 同意之后下载。(记住下载到哪,打…...

计算机网络重点概念整理-第二章 物理层【期末复习|考研复习】
第二章 物理层 【期末复习|考研复习】 计算机网络系列文章传送门: 第一章 计算机网络概述 第二章 物理层 第三章 数据链路层 第四章 网络层 第五章 传输层 第六章 应用层 第七章 网络安全 计算机网络整理-简称&缩写 文章目录 第二章 物理层 【期末复习|考研复习…...

【计算机网络】从输入URL到页面都显示经历了什么??
文字总结 ① DNS 解析:当用户输入一个网址并按下回车键的时候,浏览器获得一个域名,而在实际通信过程中,我们需要的是一个 IP 地址,因此我们需要先把域名转换成相应 IP 地址。浏览器会首先从缓存中找是否存在域名&…...

[C++]——带你学习类和对象
类和对象——上 目录:一、面向过程和面向对象二、类的概念三、类的访问限定符和封装3.1 访问限定符3.2 封装 四、类的作用域五、类的实例化六、类的对象大小的计算七、类成员函数this指针7.1 this指针的引用7.2 this 指针的特性 目录: 类和对象是很重要…...

Docker多平台、跨平台编译打包
大多数带有Docker官方标识的镜像都提供了多架构支持。如:busybox镜像支持amd64, arm32v5, arm32v6, arm32v7, arm64v8, i386, ppc64le, and s390x。当你在amd64设备上运行容器时,会拉取amd64镜像。 当你需要构建多平台镜像时,可以用 --platf…...

LLM系列 | 22 : Code Llama实战(下篇):本地部署、量化及GPT-4对比
引言 模型简介 依赖安装 模型inference 代码补全 4-bit版模型 代码填充 指令编码 Code Llama vs ChatGPT vs GPT4 小结 引言 青山隐隐水迢迢,秋尽江南草未凋。 小伙伴们好,我是《小窗幽记机器学习》的小编:卖热干面的小女孩。紧接…...

Nginx的进程结构实例演示
可以参考《Ubuntu 20.04使用源码安装nginx 1.14.0》安装nginx 1.14.0。 nginx.conf文件中worker_processes 2;这条语句表明启动两个worker进程。 sudo /nginx/sbin/nginx -c /nginx/conf/nginx.conf开启nginx。 ps -ef | grep nginx看一下进程情况。 sudo /nginx/sbin/ng…...

【Nginx36】Nginx学习:SSI静态文件服务器端包含模块
Nginx学习:SSI静态文件服务器端包含模块 这个模块让我想到了 2009 年刚刚工作的时候。最早我是做 .NET 的,而第一家公司其实是从 ASP 向 ASP.NET 转型中,因此,还是有不少的 ASP 做的页面。在那个时候,就用到了 SSI 。 …...

StripedFly恶意软件框架感染了100万台Windows和Linux主机
导语 近日,一款名为StripedFly的恶意软件框架在网络安全研究人员的监视之外悄然感染了超过100万台Windows和Linux系统。这款跨平台的恶意软件平台在过去的五年中一直未被察觉。在去年,卡巴斯基实验室发现了这个恶意框架的真实本质,并发现其活…...

蓝桥杯每日一题2023.10.25
乘积尾零 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 由于需要相乘的数很多,所以我们不能直接进行暴力模拟,我们知道10 2 * 5, 所以我们只需要找出这个数2和5的个数,其中2和5个数小的那个则为末尾0出现的个数 #include<bi…...

【C++】详解map和set基本接口及使用
文章目录 一、关联式容器与键值对1.1关联式容器(之前学的都是序列容器)1.2键值对pairmake_pair函数(map在插入的时候会很方便) 1.3树形结构的关联式容器 二、set2.1set的基本介绍2.1默认构造、迭代器区间构造、拷贝构造࿰…...

如何学习 Linux 内核内存管理
Linux内核内存管理部分是Linux内核中第二复杂的部分,但也非常有趣。学习它的最佳方法就是阅读代码。但在不了解术语和当前 mm 部分到底发生了什么的情况下,显然不能随意开始阅读代码。因此,我想这样开始学习比较好: 了解当前的 LS…...

【计算机网络】(谢希仁第八版)第一章课后习题答案
1.计算机网络可以向用户提供哪些服务? 答:例如音频,视频,游戏等,但本质是提供连通性和共享这两个功能。 连通性:计算机网络使上网用户之间可以交换信息,好像这些用户的计算机都可以彼此直接连…...

Operator开发之operator-sdk入门
1 operator-sdk 除了kubebuilder,operator-sdk是另一个常用的用于开发Operator的框架,不过operator-sdk还是基于kubebuilder,因此,通常还是建议使用kubebuilder开发Operator。 2 环境准备 跟kubebuilder类似,需要安…...

RabbitMQ生产者的可靠性
目录 MQ使用时会出现的问题 生产者的可靠性 1、生产者重连 2、生产者确认 3、数据持久化 交换机持久化 队列持久化 消息持久化 LazyQueue懒加载 MQ使用时会出现的问题 发送消息时丢失: 生产者发送消息时连接MQ失败生产者发送消息到达MQ后未找到Exchange生…...

集群节点批量执行 shell 命令
1、SSH 工具本身支持多窗口 比如 MobaXterm: 2、编写脚本通过 ssh 在多台机器批量执行shell命令 创建 ssh_hosts 配置文件,定义需要批量执行的节点(必须能够通过 ssh 免密登录,且存在同名用户) vim ssh_hostsbig…...

fl studio21.2水果软件怎么设置中文?
FL Studio编曲软件真的是个神器,不过一开始打开看到全是英文,有点头大,对吧?其实切换成中文版超级简单,只需要几个步骤就搞定啦!我自己也是用中文版的,觉得用起来更得心应手,效率也提…...

.NET CORE 3.1 集成JWT鉴权和授权2
JWT:全称是JSON Web Token是目前最流行的跨域身份验证、分布式登录、单点登录等解决方案。 通俗地来讲,JWT是能代表用户身份的令牌,可以使用JWT令牌在api接口中校验用户的身份以确认用户是否有访问api的权限。 授权:这是使用JWT的…...

nbcio-boot如何进行gitee第三方登录
更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码: https://gitee.com/nbacheng/nbcio-boot 前端代码:https://gitee.com/nbacheng/nbcio-vue.git 在线演示(包括H5) : http://122.227.135.243:9888 1、用户g…...

【C语言】字符函数、字符串函数与内存函数
简单不先于复杂,而是在复杂之后。 目录 0. 前言 1. 函数介绍 1.1 strlen 1.1.1 介绍 1.1.2 strlen 函数模拟实现 1.1.2.1 计数器方法 1.1.2.2 递归方法 1.1.2.3 指针 - 指针方法 1.2 strcpy 1.2.1 介绍 1.2.2 strcpy 函数模拟实现 1.3 strcat 1…...

生成树协议:监控 STP 端口和交换机
什么是生成树协议 生成树协议 (STP) 用于网络交换机,以防止循环和广播风暴。在局域网 (LAN) 中,两条或多条冗余路径可以连接到同一网段。当交换机或网桥从所有可用端口传输帧时,这些帧开始在网…...

【黑产攻防道03】利用JS参数更新检测黑产的协议破解
任何业务在运营一段时间之后都会面临黑产大量的破解。验证码和各种爬虫的关系就像猫和老鼠一样, 会永远持续地进行博弈。极验根据十一年和黑产博弈对抗的经验,将黑产的破解方式分为三类: 1.通过识别出验证码图片答案实现批量破解验证,即图片…...

什么是web3.0?
Web 3.0,也常被称为下一代互联网,代表着互联网的下一个重大演变。尽管关于Web 3.0的确切定义尚无共识,但它通常被认为是一种更分散、更开放且更智能的互联网。 以下是Web 3.0的一些主要特征和概念: 1. 去中心化 Web 3.0旨在减少…...

二、W5100S/W5500+RP2040树莓派Pico<DHCP>
文章目录 1 前言2 简介2 .1 什么是DHCP?2.2 为什么要使用DHCP?2.3 DHCP工作原理2.4 DHCP应用场景 3 WIZnet以太网芯片4 DHCP网络设置示例概述以及使用4.1 流程图4.2 准备工作核心4.3 连接方式4.4 主要代码概述4.5 结果演示 5 注意事项6 相关链接 1 前言 …...

【开源】基于SpringBoot的天然气工程业务管理系统的设计和实现
目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、使用角色3.1 施工人员3.2 管理员 四、数据库设计4.1 用户表4.2 分公司表4.3 角色表4.4 数据字典表4.5 工程项目表4.6 使用材料表4.7 使用材料领用表4.8 整体E-R图 五、系统展示六、核心代码6.1 查询工程项目6.2 工程物资…...

讯飞星火大模型V3.0 WebApi使用
讯飞星火大模型V3.0 WebApi使用 文档说明:星火认知大模型Web文档 | 讯飞开放平台文档中心 (xfyun.cn) 实现效果 初始化 首先构建一个基础脚手架项目 npm init vuelatest用到如下依赖 "dependencies": {"crypto-js": "^4.2.0",&q…...

拥有DOM力量的你究竟可以干什么
如果你希望访问 HTML 页面中的任何元素,那么您总是从访问 document 对象开始! 查找HTML元素 document.getElementById(id) 通过元素 id 来查找元素 <!DOCTYPE html> <html> <head><meta charset…...