当前位置: 首页 > news >正文

聊一下Word2vec-训练优化篇

Word2vec 涉及到两种优化方式,一种是负采样,一种是层序Softmax

先谈一下负采样,以跳字模型为例。中心词生成背景词可以由两个相互独立事件的联合组成来近似(引自李沐大神的讲解)。

第一个事件是,中心词和背景词同时出现在窗口中。第二个事件是,中心词和K个噪声词不同时出现在窗口数据中,其中噪声词由噪声分布随机生成。

这里我们就可以知道上一个文章开头说到的,负采样是一种等价操作还是近似操作?我们在第二个事件中,使用了K个噪声词。但是实际上呢?应该远远大于K。

还是那个例子,句子为"我/永远/爱/中国/共产党",中心词为’爱’,我们在选择噪声词的时候,选择了K个,但是实际上,在词汇表中,排除掉’我’,‘永远’,‘中国’,‘共产党’ 这四个词汇的其他词都可以算做我的噪声词,然而为了减少复杂度,我只选择了其中的K个,所以当然应该是近似了。

接下来,我们看层序Softmax。

层序Softmax 对应的就是在输出层使用一个霍夫曼树,代替了原本在输出层统一进行的softmax。

首先,我们需要了解霍夫曼树在这里是如何构建的。

简单讲,霍夫曼树是一个二叉树,以语料中出现过的词当做叶子节点,以各词在语料中出现的次数当做权值进行构造。其中叶子节点有N个,就是词典的大小,非叶子节点有N-1个(包括根节点)。

比如说我的所有文章中,“共产党”这个词出现了 100次,是最大的,那么根节点的左分支(或者右分支)就对应着”共产党“这个词,另一个分支做与根节点相同的操作,找到排除”共产党“这个词之外的所有词中最大的词,比如”中国“作为其中的左分支(或者右分支),以此类推,一个霍夫曼树就成功构建。

霍夫曼树中,我们需要注意的是,每个非叶子节点对应一个向量,每个叶子节点对应一个向量。两种向量都会随着模型的训练进行更新。

其中叶子节点的向量就是我们的词向量,而非叶子节点上的向量就是没有什么实际含义,它的作用就是帮助我们计算模型在霍夫曼树上不断的进行二分类时候的概率。

以上面那句话为例,我们现在中心词为‘爱’,然后,我要预测背景词‘中国’。首先我们要确定的是我的叶子节点是包含所有单词的,也就是包含了我这个简单句子的五个单词(不考虑前期数据清洗低频率词的情况)。

也就是说,在这个霍夫曼树上,有且仅有一条路径,让我从根节点出发,经过多次判断(也就是说走过了多个非叶子节点),最终走到了“中国”这个叶子节点,对应的概率就是每个节点概率的连乘。

然后这个时候,我们想一下霍夫曼树是不是一种近似?

当然,我们每更新一个词向量,只是涉及到了可以到达叶子节点的这一条路径上节点。所以复杂度就是树的高度,也就是 O(log|V|)

相关文章:

聊一下Word2vec-训练优化篇

Word2vec 涉及到两种优化方式,一种是负采样,一种是层序Softmax 先谈一下负采样,以跳字模型为例。中心词生成背景词可以由两个相互独立事件的联合组成来近似(引自李沐大神的讲解)。 第一个事件是,中心词和…...

Julia元组、字典、集合

文章目录 元组字典集合共性 Julia系列:编程初步🔥数组 作为通用编程语言,除了数组之外,julia实现了元组、字典、集合等数据结构。 元组 与向量类似,也是一维的数据结构,并且对数据类型无要求&#xff0c…...

EfficientViT:高分辨率密集预测的多尺度线性关注

标题:EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction 论文:https://arxiv.org/abs/2205.14756 中文版:【读点论文】EfficientViT: Enhanced Linear Attention for High-Resolution Low-Computation将soft…...

每日一道算法题:26. 删除有序数组中的重复项

难度 简单 题目 给你一个 非严格递增排列 的数组 nums ,请你原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。 考虑 nums 的唯一元素的数量为…...

吴恩达《机器学习》2-2->2-4:代价函数

一、代价函数的概念 代价函数是在监督学习中用于评估模型的性能和帮助选择最佳模型参数的重要工具。它表示了模型的预测输出与实际目标值之间的差距,即建模误差。代价函数的目标是找到使建模误差最小化的模型参数。 二、代价函数的理解 训练集数据:假设我…...

软考 系统架构设计师系列知识点之设计模式(6)

接前一篇文章:软考 系统架构设计师系列知识点之设计模式(5) 所属章节: 老版(第一版)教材 第7章. 设计模式 第2节. 设计模式实例 相关试题 1. 设计模式描述了一个出现在特定设计语境中的设计再现问题&…...

use renv with this project create a git repository

目录 1-create a git repository 2-Use renv with this project 今天在使用Rstudio过程中,发现有下面两个新选项(1)create a git repository (2) Use renv with this project. 选中这两个选项后,创建新项目,在项目目…...

摄像头种类繁多,需要各自APP

老外报怨吾APP不能用之后,吾按照提供的图片买了一个。昨天到货以后,心想这下你小子可被我逮住了,非解决你不可…… 吾APP当然不能用。老外声称能用的APP也不能用。又下载了一个,还是不能用。 最后只能老老实实的想办法从Google P…...

Openssl数据安全传输平台010:jasoncpp 0.10.7的编译 - Windows-vs2022 / Ubuntu/ Centos8 -含测试代码

文章目录 0. 代码仓库1 安装1.1 windows 下的安装1.2 Linux 下的安装1.2.1 相关环境配置问题1.2.2 准备安装1.2.2.1 安装scons1.2.2.2 安装jsoncppUbuntu系统下Centos8系统下 2 编译 c 测试文件: json-test.cpp2.1 配置库文件2.2 配置VS2.3 Winsows系统下cpp文件测试…...

GSCoolink GSV6182 带嵌入式MCU的MIPI D-PHY转HDMI 2.0

Gscoolink GSV6182是一款高性能、低功耗的MIPI D-PHY到HDMI 2.0转换器。通过集成基于RISC-V的增强型微控制器,GSV6182创造了一种具有成本效益的解决方案,提供了上市时间优势。MIPI D-PHY接收器支持CSI-2版本1.3和DSI版本1.3,每条通道最高可达…...

ABBYY FineReader PDF15免费版图片文件识别软件

ABBYY全称为“ABBYY FineReader PDF”, ABBYY FineReader PDF集优秀的文档转换、PDF 管理和文档比较于一身。 首先这款软件OCR文字识别功能十分强大,话不多说,直接作比较。下图是某文字识别软件识别一串Java代码的结果,识别的结果就不多评价…...

如何使用手机蓝牙设备作为电脑的解锁工具像动态锁那样,蓝牙接近了电脑,电脑自动解锁无需输入开机密码

环境: Win10 专业版 远程解锁 蓝牙解锁小程序 问题描述: 如何使用手机蓝牙设备作为电脑的解锁工具像动态锁那样,蓝牙接近了电脑,电脑自动解锁无需输入开机密码 手机不需要拿出来,在口袋里就可以自动解锁&#xff…...

几道面试题记录20231023

1, JVM优化 -Xms-Xmx -Xmn -Xss -XX:PermSize -XX:MaxPermSize -NewRatio -SuvriorRatio 收集器配置: 一般:串行收集 Serial 吞吐优先:并行收集Pramllel 响应优先:并发收集Conc 2,支付掉单如何解决? 因为网络等原…...

c++ 线程安全的string类

非安全string 说明 c标准未规定stl容器以及字符串的线程安全性&#xff0c;故std::string在多线程下是不安全的。 代码示例 #include <iostream> #include <stdio.h> using namespace std;std::string *sp nullptr;void Read() {for(int i 0; i < 100000;…...

linux上安装apktool反编译apk解析AndroidManifest.xml得到首页Activity

需求 在linux系统上反编译安卓app, 有些应用需要知道其主页Activity用于adb指令打开其主页。 安装 自动安装脚本 #!/bin/bashwget https://raw.githubusercontent.com/iBotPeaches/Apktool/master/scripts/linux/apktool -O ./apktool wget https://bitbucket.org/iBotPeac…...

代码随想录算法训练营第4天| 24. 两两交换链表中的节点、19.删除链表的倒数第N个节点、面试题 02.07. 链表相交 、142.环形链表II

JAVA语言编写 24. 两两交换链表中的节点 谷歌、亚马逊、字节、奥多比、百度 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。…...

【面向对象程序设计】Java大作业 汽车租赁管理系统V4.0

前言 自己大二时候使用JavaMysql写的租车系统大作业V4.0黑窗口版的一个记录&#xff0c;简简单单的黑窗口&#xff0c;不是炫酷的前后端分离也没用GUI&#xff0c;但功能完善&#xff0c;该有都有&#xff0c;当时得分也还是挺不错的 技术栈 Java (jdk8)Mysql 资源包内容 …...

golang模拟QQ退出后自动重启

模拟QQ退出后自动重启&#xff0c;go build xxx.go 打包成exe运行。 processName 为你所需要的进程exe processNamePath 为你所需要的进程路径 package mainimport ("bytes""errors""fmt""os""os/exec""regexp"&…...

jQuery中ajax如何使用

jQuery中ajax如何使用及代码详解 1. 引言 在现代Web开发中&#xff0c;使用Ajax进行异步数据交互变得非常普遍。而在jQuery中&#xff0c;提供了便捷的方法来实现Ajax请求&#xff0c;简化了开发过程。本文将介绍jQuery中如何使用Ajax以及通过代码详解其使用方法。 2. Ajax简介…...

redis集群的多key原子性操作如何实现?

1、背景 在单实例redis中&#xff0c;我们知道多key原子性操作可以用lua脚本或者multi命令来实现。 比如说有一个双删场景&#xff0c;要保证原子性同时删除k1和k2。 可以用lua双删 EVAL "redis.call(del, KEYS[1]);redis.call(del, KEYS[2])" 2 k1 k2也可以用事务…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...