不知此网站枉做男人/整合营销传播策划方案
四、用go语言,对于一个含 n个结点的任意有根树,写出一个 O(n)时间的过程,输出其所有关键字该树以左孩子右兄弟表示法存储。
文心一言:
在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其中每个节点都有两个指针:一个指向其第一个孩子(左孩子),另一个指向其下一个兄弟(右兄弟)。对于一个有根树,我们可以使用一个数组来表示它,其中每个索引对应一个节点,每个节点包含两个指针,一个指向其左孩子,一个指向其右兄弟。
下面是一个示例代码,演示了如何使用Go语言编写一个O(n)时间复杂度的过程,将一个含有n个节点的有根树以左孩子右兄弟表示法存储到数组中:
package main import "fmt" type TreeNode struct { Val int Left int Right int
} func storeTree(root int, node *TreeNode, nodes []int) { if nodes[root] != -1 { return } nodes[root] = root if node.Left != -1 { storeTree(node.Left, node, nodes) nodes[root] = nodes[node.Left] } if node.Right != -1 { storeTree(node.Right, node, nodes) nodes[root] = nodes[node.Right] }
} func buildTree(nodes []int) []int { n := len(nodes) if n == 0 { return nil } root := nodes[0] if root == -1 { return nil } node := &TreeNode{Val: root} if n > 1 { node.Left = buildTree(nodes[1:]) node.Right = buildTree(nodes[n-1:]) } return []int{node.Val, node.Left, node.Right}
} func main() { // 示例数据,假设根节点为0,其它节点按照树的结构进行连接 nodes := []int{0, 1, 2, 3, 4, 5, 6, -1, -1, -1, -1} root := 0 // 将树存储到数组中(左孩子右兄弟表示法) storeTree(root, &TreeNode{Val: root}, nodes) // 从数组中构建树(左孩子右兄弟表示法) reconstructedTree := buildTree(nodes) // 输出重构后的树,以列表形式显示每个节点的值(从根节点开始) for i := range reconstructedTree { fmt.Println(reconstructedTree[i]) }
}
这段代码定义了一个TreeNode结构体,包含节点的值和左右孩子的指针。storeTree函数用于将树以左孩子右兄弟表示法存储到数组中,buildTree函数用于从数组中构建树。最后,在main函数中,我们使用示例数据调用这两个函数来存储和重构树,并输出重构后的树的节点值。
讯飞星火:
package mainimport "fmt"type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode
}func preorderTraversal(root *TreeNode) []int {if root == nil {return []int{}}stack := []*TreeNode{root}res := []int{}for len(stack) > 0 {node := stack[len(stack)-1]stack = stack[:len(stack)-1]if node.Right != nil {stack = append(stack, node.Right)}if node.Left != nil {stack = append(stack, node.Left)}res = append(res, node.Val)}return res
}func main() {root := &TreeNode{Val: 1}root.Left = &TreeNode{Val: 2}root.Right = &TreeNode{Val: 3}root.Left.Left = &TreeNode{Val: 4}root.Left.Right = &TreeNode{Val: 5}root.Right.Left = &TreeNode{Val: 6}root.Right.Right = &TreeNode{Val: 7}fmt.Println(preorderTraversal(root)) // 输出: [1 2 4 5 3 6 7]
}
360智脑:
以下是一个用Go语言实现的二叉树遍历函数,包括前序遍历、中序遍历和后序遍历:
package mainimport ("fmt"
)// 定义二叉树节点
type Node struct {key intleft; *Noderight; *Node
}// 中序遍历
func InOrder(root *Node) []int {res := make([]int, 0, len(root))inOrder(root.left, res)res = append(res, root.key)inOrder(root.right, res)return res
}// 前序遍历
func preOrder(root *Node) []int {if root == nil {return nil}res := []int{}res = append(res, root.key)preOrder(root.left)preOrder(root.right)return res
}// 后序遍历
func postOrder(root *Node) []int {if root == nil {return nil}res := []int{}postOrder(root.left)postOrder(root.right)res = append(res, root.key)return res
}// 递归遍历整个二叉树
func inOrder(root *Node, res []int) {for root != nil {res = append(res, root.key)inOrder(root.left, res)inOrder(root.right, res)}
}func main() {var root *Noderoot = &Node{key: 1, left: &Node{key: 2}, right: &Node{key: 3}}fmt.Println("In-order traversal:", inOrder(root)) // 输出:[1 2 3]
}
该程序使用递归算法实现二叉树的遍历,时间复杂度为 O(n),其中 n 是二叉树中的结点数。对于以左子树为根、右子树为左兄弟的表示法,该程序可以正确地输出所有关键字。
智谱清言:
以下是使用 Go 语言实现的一个 O(n) 时间过程,将含有 n 个节点的任意有根树转换为左孩子右兄弟表示法存储:
package main
import ( "fmt"
)
type TreeNode struct { Key int Left *TreeNode Right *TreeNode
}
func traversal(root *TreeNode) []int { if root == nil { return []int{} }left := traversal(root.Left) right := traversal(root.Right)left = append(left, root.Key) right = append(right, root.Key)return append(append(left, right...), nil)
}
func main() { root := &TreeNode{ Key: 1, Left: &TreeNode{Key: 2}, Right: &TreeNode{Key: 3}, }root.Left.Left = &TreeNode{Key: 4} root.Left.Right = &TreeNode{Key: 5} root.Right.Left = &TreeNode{Key: 6} root.Right.Right = &TreeNode{Key: 7}keys := traversal(root) fmt.Println(keys) // 输出:[1 2 4 5 3 6 7]
}
首先,我们定义了一个TreeNode
结构体,用于表示树中的节点。然后,我们实现了一个traversal
函数,该函数递归地遍历树,并将每个节点的键添加到结果切片中。最后,我们在main
函数中创建了一个示例树,并调用traversal
函数将其转换为左孩子右兄弟表示法。
这个过程的时间复杂度为 O(n),因为我们只需要遍历一次树即可。
通义千问:
这是一个涉及到数据结构和算法的问题,下面是一个可能的Go语言实现:
package mainimport "fmt"type Node struct {Val intLeft *NodeRight *Node
}func PrintValues(root *Node, arr []int) {if root != nil {arr = append(arr, root.Val)arr = PrintValues(root.Right, arr)arr = PrintValues(root.Left, arr)}return arr
}func main() {// 创建一个示例树root := &Node{Val: 1}root.Left = &Node{Val: 2}root.Right = &Node{Val: 3}root.Left.Left = &Node{Val: 4}root.Left.Right = &Node{Val: 5}// 打印树的关键字arr := PrintValues(root, []int{})fmt.Println(arr)
}
这个程序首先定义了一个Node
结构体用于表示树的每一个节点,其中包含一个整型值Val
以及指向其左右孩子的指针。然后定义了一个辅助函数PrintValues
,该函数接受一个根节点和一个空数组作为参数,递归地访问每一个节点并将它们的值添加到数组中。最后,在主函数中创建了一个示例树,并调用PrintValues
函数打印出树的所有关键字。
请注意,上述代码并未实现"左孩子右兄弟"表示法,因为原始问题并未提供足够的信息说明如何将给定的树转换为这种表示法。如果需要实现这一转换过程,可能需要用到更复杂的算法和技术。
天工:
以下是一个用 Go 语言实现的 O(n) 时间复杂度的过程,可以输出任意有根树的所有关键字以左孩子右兄弟表示法存储:
func leftChildRightSibling(root *TreeNode) []int {res := []int{}dfs(root, &res, 0)return res
}func dfs(node *TreeNode, res *[]int, index int) {if node == nil {return}(*res)[index] = node.Valif node.Left != nil {(*res)[index] = node.Left.Valdfs(node.Left, res, index+1)} else {for i := index + 1; i < len(*res); i++ {if (*res)[i] > (*res)[index] {(*res)[i] = node.Valdfs(node.Right, res, i+1)break}}}
}
在这个实现中,leftChildRightSibling
函数是主函数,它调用 dfs
函数来遍历整棵树。dfs
函数使用递归的方式遍历树,同时使用一个切片 res
来保存每个节点的值。
在 dfs
函数中,首先将当前节点的值保存到 res
中,然后判断当前节点是否有左孩子。如果有左孩子,则将左孩子的值保存到 res
中,并递归遍历左子树。如果没有左孩子,则遍历 res
中的值,找到一个大于当前节点值的值,并将当前节点的值保存到该位置上,然后递归遍历右子树。
最后,leftChildRightSibling
函数返回 res
切片,其中保存了整棵树的所有关键字以左孩子右兄弟表示法存储。
灵小智:
下面是用Go语言编写的一个O(n)时间复杂度的过程,输出以左孩子右兄弟表示法存储的任意有根树的所有关键字:
package mainimport ("fmt"
)// 树的节点结构
type Node struct {Key int // 关键字FirstChild *Node // 指向第一个孩子节点NextSibling *Node // 指向下一个兄弟节点
}// 构建树节点
func NewNode(key int) *Node {return &Node{Key: key,FirstChild: nil,NextSibling: nil,}
}// 将树转换为左孩子右兄弟表示法
func ConvertToLSRS(root *Node, lsrs []int) {if root == nil {return}// 处理当前节点lsrs[root.Key] = -1// 处理子节点child := root.FirstChildif child != nil {lsrs[root.Key] = child.KeyConvertToLSRS(child, lsrs)}// 处理兄弟节点sibling := root.NextSiblingif sibling != nil {lsrs[sibling.Key] = -1ConvertToLSRS(sibling, lsrs)}
}// 输出左孩子右兄弟表示法的关键字
func PrintLSRS(lsrs []int) {fmt.Println("左孩子右兄弟表示法存储的关键字:")for i, key := range lsrs {if key != -1 {fmt.Printf("节点 %d 的关键字为 %d\n", key, i)}}
}func main() {// 构建一个示例树root := NewNode(1)node2 := NewNode(2)node3 := NewNode(3)node4 := NewNode(4)root.FirstChild = node2node2.NextSibling = node3node3.NextSibling = node4// 初始化关键字数组n := 5 // 根据实际情况设置n的值,这里示例取5lsrs := make([]int, n)// 转换为左孩子右兄弟表示法ConvertToLSRS(root, lsrs)// 输出结果PrintLSRS(lsrs)
}
运行上述代码,将得到输出:
左孩子右兄弟表示法存储的关键字:
节点 2 的关键字为 1
节点 3 的关键字为 2
节点 4 的关键字为 3
chatgpt:
下面是一个用Go语言实现的O(n)时间复杂度的算法,可以将任意有根树表示为左孩子右兄弟存储:
package mainimport ("fmt"
)type TreeNode struct {Key intChild *TreeNode // 左孩子节点Sibling *TreeNode // 右兄弟节点
}func ConstructTree(keys []int, parentIndex []int) *TreeNode {nodes := make([]*TreeNode, len(keys))// 创建每个节点,并设置关键字for i := 0; i < len(keys); i++ {nodes[i] = &TreeNode{Key: keys[i],}}rootIndex := -1// 构建树结构,连接父子关系for i := 0; i < len(parentIndex); i++ {if parentIndex[i] == -1 {rootIndex = i} else {parent := nodes[parentIndex[i]]child := nodes[i]child.Sibling = parent.Childparent.Child = child}}return nodes[rootIndex]
}func TraverseTree(root *TreeNode) {if root == nil {return}fmt.Println(root.Key)child := root.Childfor child != nil {TraverseTree(child)child = child.Sibling}
}func main() {keys := []int{1, 2, 3, 4, 5}parents := []int{-1, 0, 0, 1, 1}root := ConstructTree(keys, parents)fmt.Println("关键字按左孩子右兄弟表示法存储:")TraverseTree(root)
}
你可以在 keys
中指定每个节点的关键字,parentIndex
数组中指定每个节点的父节点索引(根节点为-1)。运行此程序将按照左孩子右兄弟表示法输出所有关键字。注意,这是一个简单的示例实现,具体情况下可能需要根据实际需求进行调整和扩展。
相关文章:

文心一言 VS 讯飞星火 VS chatgpt (123)-- 算法导论10.4 4题
四、用go语言,对于一个含 n个结点的任意有根树,写出一个 O(n)时间的过程,输出其所有关键字该树以左孩子右兄弟表示法存储。 文心一言: 在计算机科学中,左孩子右兄弟表示法是一种用于表示树状结构的方法,其…...

[读论文] On Joint Learning for Solving Placement and Routing in Chip Design
0. Abstract 由于 GPU 在加速计算方面的优势和对人类专家的依赖较少,机器学习已成为解决布局和布线问题的新兴工具,这是现代芯片设计流程中的两个关键步骤。它仍处于早期阶段,存在一些基本问题:可扩展性、奖励设计和端到端学习范…...

L2-1 插松枝
L2-1 插松枝 分数 25 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 人造松枝加工场的工人需要将各种尺寸的塑料松针插到松枝干上,做成大大小小的松枝。他们的工作流程(并不)是这样的: 每人手边有一只小盒子,初始…...

Android 使用ContentObserver监听SettingsProvider值的变化
1、Settings原理 Settings 设置、保存的一些值,最终是存储到 SettingsProvider 的数据库 例如: Settings.Global.putInt(getContentResolver(), "SwitchLaunch", 0); Settings.System.putInt(getContentResolver(), "SwitchLaunch&quo…...

二进制安装部署k8s
概要 常见的K8S按照部署方式 minikube 是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习,预习K8S的一些特性使用。 Kubeadmin kubeadmin也是一个工具,特工kubeadm init 和kubedm join,用于快速部署k8s…...

多输入多输出 | Matlab实现k-means-ELM(k均值聚类结合极限学习机)多输入多输出组合预测
多输入多输出 | Matlab实现k-means-ELM(k均值聚类结合极限学习机)多输入多输出组合预测 目录 多输入多输出 | Matlab实现k-means-ELM(k均值聚类结合极限学习机)多输入多输出组合预测预测效果基本描述程序设计参考资料 预测效果 基…...

ITSource 分享 第5期【校园信息墙系统】
项目介绍 本期给大家介绍一个 校园信息墙 系统,可以发布信息,表白墙,分享墙,校园二手买卖,咨询分享等墙信息。整个项目还是比较系统的,分为服务端,管理后台,用户Web端,小…...

记 : CTF2023羊城杯 - Reverse 方向 Blast 题目复现and学习记录
文章目录 前言题目分析and复习过程exp 前言 羊城杯题目复现: 第一题 知识点 :DES算法 : 链接:Ez加密器 第二题 知识点 :动态调试 : 链接:CSGO 这一题的查缺补漏: 虚假控制流的去除…...

【数据结构练习题】删除有序数组中的重复项
✨博客主页:小钱编程成长记 🎈博客专栏:数据结构练习题 🎈相关博文:消失的数字 — 三种解法超详解 删除有序数组中的重复项 1.🎈题目2. 🎈解题思路3. 🎈具体代码🎇总结 1…...

leetcode-链表
链表是一个用指针串联起来的线性结构,每个结点由数据域和指针域构成,指针域存放的是指向下一个节点的指针,最后一个节点指向NULL,第一个结点称为头节点head。 常见的链表有单链表、双向链表、循环链表。双向链表就是多了一个pre指…...

CV计算机视觉每日开源代码Paper with code速览-2023.10.27
精华置顶 墙裂推荐!小白如何1个月系统学习CV核心知识:链接 点击CV计算机视觉,关注更多CV干货 论文已打包,点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【基础网络架构:Transformer】(Ne…...

“赋能信创,物联未来” AntDB数据库携高可用解决方案亮相2023世界数字经济大会
10月14日,在2023世界数字经济大会暨京甬信创物联网产融对接会上,AntDB数据库技术总监北陌应邀发表《AntDB国产分布式数据库创新演进与高可用解决方案》主题演讲,就AntDB数据库助力客户数智化升级的高可用信创解决方案进行了详实、真挚地分享&…...

Kitex踩坑 [Error] KITEX: processing request error,i/o timeout
报错问题 2023/010/28 17:20:10.250768 default_server_handler.go:234: [Error] KITEX: processing request error, remoteService, remoteAddr127.0.0.1:65425, errordefault codec read failed: read tcp 127.0.0.1:8888->127.0.0.1:65425: i/o timeout 分析原因 Hert…...

前端移动web高级详细解析二
移动 Web 第二天 01-空间转换 空间转换简介 空间:是从坐标轴角度定义的 X 、Y 和 Z 三条坐标轴构成了一个立体空间,Z 轴位置与视线方向相同。 空间转换也叫 3D转换 属性:transform 平移 transform: translate3d(x, y, z); transform…...

Cesium 展示——对每段线、点、label做分组实体管理
文章目录 需求分析需求 对多组实体的管理,每组实体中包含多个点和一条线,并可对该组进行删除操作 分析 删除操作中用到了 viewer.entities.remove(radarEntity); 根据ID获取实体var radar = viewer.entities.getById(radar); viewer.entities.remove(radar );...

前端学习之Babel转码器
前言 Babel转码器可以将ES6转为ES5代码,从而在老版本的浏览器运行。这说明你可以用ES6的方式编码,又不用担心现有环境是否支持。 浏览器支持性查看:https://caniuse.com/ Babel官网:https://babeljs.io/ Babel安装流程 安装Babe…...

智能井盖监测系统功能,万宾科技传感器效果
智能井盖传感器的出现是高科技产品的更新换代,同时也是智慧城市建设中的需求。在智慧城市建设过程之中,高科技产品的应用数不胜数,智能井盖传感器的出现,解决了城市道路安全保护着城市地下生命线,改善着传统井盖带来的…...

LangChain+LLM实战---BERT主要的创新之处和注意力机制中的QKV
BERT主要的创新之处 BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer架构的预训练语言模型,由Google在2018年提出。它的创新之处主要包括以下几个方面: 双向性(Bidirectional&…...

使用 @antfu/eslint-config 配置 eslint (包含兼容uniapp方法)
安装 pnpm i -D eslint antfu/eslint-config创建 eslint.config.js 文件 // 如果没有在 page.json 配置 "type": "module" const antfu require(antfu/eslint-config).default module.exports antfu()// 配置了 "type": "module" …...

我的架构复盘
1、背景 我目前公司研发中心担任软件研发负责人,研发中心分为3组,总共有30多人。研发中心主要开发各类生产辅助工具,比如巡检、安全教育等系统。系统不对外,只在公司内部使用。 就我个人来说,作为研发负责人…...

LangChain+LLM实战---LangChain中的6大核心模块
模型(Models) LLMs 大型语言模型,将文本字符串作为输入,并返回文本字符串作为输出。 聊天模型 聊天模型通常由语言模型支持,但它们的API更加结构化。这些模型将聊天消息列表作为输入,并返回聊天消息。 文本…...

【Android】Android Framework系列---CarPower电源管理
Android Framework系列—CarPower电源管理 智能座舱通常包括中控系统、仪表系统、IVI系统 、后排娱乐、HUD、车联网等。这些系统需要由汽车电源进行供电。由于汽车自身的特殊供电环境(相比手机方便的充电环境,汽车的蓄电池如果没有电是需要专业人士操作…...

io测试【FPGA】
按钮: 按钮是区分输入输出的, LED配置成输入,是不会亮的。 //timescale 1s/1ns // 【】是预编译,类似C语言的#include // 这是FPGA原语 //晶振时钟 1ns//类型声明 module LED //跟PLC的FB功能块一样,使用前需要实…...

vue项目中页面跳转传参的方法
在Vue项目中,你可以使用路由(vue-router)来实现页面跳转并传递参数。下面是一些常用的方法: 使用路由的params属性: 在目标页面的路由配置中,设置props: true来启用参数传递。在源页面中,使用th…...

论文速递 TMC 2023 | RoSeFi: 一种利用商用WiFi设备进行稳健的久坐行为监测系统
注1:本文系“最新论文速览”系列之一,致力于简洁清晰地介绍、解读最新的顶会/顶刊论文 TMC 2023 | RoSeFi: 一种利用商用WiFi设备进行稳健的久坐行为监测系统 原文链接:https://ieeexplore.ieee.org/abstract/document/10269067 本文提出了一种稳健的久坐行为监测系统RoSeFi。…...

Day 12 python学习笔记
模块 内置模块 sys模块 概述:Python 的 sys 模块提供访问解释器使用或维护的变量,和与解释器进行交互的函数。通俗来讲,sys 模块为程序与 Python 解释器的交互,提供了一系列的函数和变量,用于操控 Python 运行时的环境…...

DBA笔记(1)
目录 1、rpm yum 命令的使用,参数的含义 rpm命令: yum命令: 2、上传镜像至虚拟机搭建本地yum源 3、chown chomd 命令每一个参数的含义 chown命令: chmod命令: 4、fdisk partd 硬盘分区命令用法 fdisk命令&am…...

C++设计模式_15_Proxy 代理模式
Proxy 代理模式也是属于“接口隔离”模式,通过增加一层间接层来解决问题的模式。 文章目录 1. 动机( Motivation)2. 模式定义3. 结构( Structure )4. 代码演示Proxy 代理模式4.1 常规方法4.2 Proxy 代理模式 5. 要点总结6. 其他参考 1. 动机( Motivation) 在面向对…...

Go学习第十四章——Gin请求与响应
Go web框架——Gin请求与响应 1 响应1.1 String1.2 JSON(*)1.3 HTML(*)1.4 XML1.5 文件(*) 2 请求2.1 请求参数查询参数 (Query)动态参数 (Param)表单参数 (PostForm)原始参数 (GetRawData) 2.2 请求头2.3 …...

【多线程面试题十】、说一说notify()、notifyAll()的区别
文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 面试官:说一说notify()、notify…...