如何复制网站做二级分站/网络推广工作室
协同网络入侵检测CIDS
- 1、概念
- 2、CIDS的分类
- 3、解决办法
- 4、CIDS模型
- 5、挑战与不足
⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计2598字,阅读大概需要3分钟
🌈更多学习内容, 欢迎👏关注👀【文末】我的个人微信公众号:不懂开发的程序猿
个人网站:https://jerry-jy.co/
1、概念
协同入侵检测技术( collaborative intrusion detection system,CIDS) 以分布式入侵检测系统 DIDS ( distributed intrusion detection system,DIDS) 结构为基础,能够结合其他技术,通过多种协同方式检测出大规模协同攻击,是一种能够提高检测精度、可以部署在大规模网络的入侵检测技术。
协同概念引入到 IDS 中,旨在通过多源数据采集、多方协同处理来提高整体 IDS 的检测率。目前研究人员普遍将 CIDS 定义为: 两个及以上具备一定独立检测能力的个体,通过数据收集、检测分析、告警响应三个方面的协同工作,共同达到入侵检测目的的综合入侵检测系统。
2、CIDS的分类
分层式 CIDS 即子系统协同 IDS,是集中式 CIDS 的改进。它将整个 IDS 分成若干个小的子系统,子系统能够对收集的数据进行过滤和关联,并反馈给上级的处理节点,最终交付到顶层处理中心,实现以顶层处理中心为根节点的树状层次检测模型。在分层式 CIDS 中,通过子处理器对数据的过滤和聚合缓解了中心处理器的数据处理压力,提高了系统处理性能和处理效率,但是数据在每一层都被聚合处理,存在数据损失的情况,一些隐蔽性强的攻击可能会被忽略; 此外,基于上下级的协同关系容易因为单点故障而使检测路径中断,进而影响整体检测能力; 最后,系统安全性仍然受限于根节点,对根节点的安全要求较高。
对等式 CIDS 是在分层式 CIDS 基础上的进一步改进,节点的自主性得到进一步加强。在对等式 CIDS 中,各个节点地位平等,具有完整的入侵检测能力,因此可以并行处理数据,通过节点间的数据共享和聚合检测出复杂协同攻击,提高了系统检测能力,同时可以有效避免单点故障,提高了系统的健壮性。在基于机器学习的对等式CIDS 中,各节点通过与其他节点共享学习经验,能够不断提高自己的检测能力,进而有效提高系统的检测水平。
CIDS 相较于传统 IDS 的优势在于可以检测出大规模的分布式攻击和协同攻击,如网络扫描、蠕虫病毒与分布式拒绝服务攻击(DDoS) 等,还可以通过数据的共享改善检测方法,提高入侵检测精度,这就涉及到数据聚合的问题。在 CIDS 中,数据聚合是指将各分布式节点收集的数据进行聚合处理后,再综合分析攻击行为的方法。
3、解决办法
解决协作入侵检测问题的一种有前途的方法是通过用于消息通信的基于内容的关联方案,即用于警报关联的发布-订阅模型。发布-订阅模型已广泛应用于事件通知、移动支持服务等任务的文献中以及 Java 消息服务中。在协作入侵检测的背景下,当参与者 IDS 检测到其受监控子网中可能存在攻击时,它会生成警报,并将该警报报告给 CIDS。这称为订阅,即IDS 向 CIDS 注册其兴趣,以确认警报是否是大规模协同攻击的一部分。CIDS 的作用是关联参与 IDS 订阅的警报。如果收到足够的订阅警报来确认攻击,则 CIDS会向订阅该攻击的参与 IDS 发布已确认攻击的通知。
4、CIDS模型
一般来说,CIDS中分布计算的协作模型有3种,如图所示。第一种方法是集中式协作(图(a)),其中所有关联都在集中式节点上执行。警报由参与的 IDS 订阅到集中节点。所有警报都在集中节点处关联,该节点会通知相关 IDS 任何已确认的攻击。与其他模型相比,这种集中式协作架构具有最高的整体准确性,因为所有信息都可以在单个位置获取。关键的研究问题之一是如何在这种 CIDS 中找到灵敏度和误报率之间的权衡。
第二种方法是单级分层协作,如图(b)所示。在这种方法中,一些关联可以由参与的IDS在本地执行,因此并非所有警报都需要订阅到中央关联节点。这可以减少集中式节点上的计算负载,以便支持可用于寻找更具表现力(即,计算成本昂贵)的警报模式的更复杂的算法。
第三种方法是消除对集中式关联节点的需要,从而可以以分散的方式在参与的IDS之间分配关联负载如图©。特别地,该方法支持对等(P2P)通信方案。为了以可扩展的方式工作,需要一种方法将订阅的警报自动路由到负责的对等点以进行关联,以便对等点不需要跟踪哪些对等点负责哪些攻击实例。
5、挑战与不足
CIDS 有可能解决孤立 IDS 的问题,因为它们能够识别网络范围的攻击,并通过结合来自多个网络的攻击证据来减少误报。
然而,CIDS 带来了如下新挑战。
-
系统架构:CIDS本质上是一个分布式入侵检测系统。因此,该架构决定了如何共享和处理来自各个检测传感器的警报。检测单元和关联单元放置在哪里将影响CIDS的可扩展性和性能。
•警报关联:CIDS的主要目标是检测网络范围的攻击并减少不相关的警报,这是通过警报关联(即数据关联单元)来实现的。来自各个传感器的警报如何关联决定了 CIDS 的检测准确性。 -
数据隐私:如果组织之间共享信息,数据隐私是实践中的一个重要问题。如果 CIDS 没有提供适当的隐私措施,那么个体参与者一开始就不太可能分享他们的警报。
-
安全和信任:与其他分布式系统一样,安全和信任是任何 CIDS 的一个重要方面。由于CIDS的整体检测准确性取决于每个参与的IDS提供的警报信息的正确性,因此验证警报的可信度非常重要。
–end–
相关文章:

协同网络入侵检测CIDS
协同网络入侵检测CIDS 1、概念2、CIDS的分类3、解决办法4、CIDS模型5、挑战与不足 ⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计2598字,阅读大概需要3分钟 🌈更多学习内容&…...

(13)PC端自动化测试-C#微信接收消息并自动回复
本篇文章实现了微信自动接收最新的实时聊天信息,并对当前实时的聊天信息做出对应的回复。 可以自行接入人工智能或者结合自己的业务来做出自动回复。 下面视频是软件实际效果 自动接收消息并回复 实现的逻辑是实时监控微信的聊天面板中UI对象来判断是否有最新的消…...

企业金蝶KIS软件服务器中了locked勒索病毒怎么办,勒索病毒解密
最近一段时间,网络上的locked勒索病毒又开始了新一波的攻击,给企业的正常生产生活带来了严重影响。经过最近一段时间云天数据恢复中心对locked勒索病毒的解密,为大家整理了以下有关locked勒索病毒的相关信息。近期locked勒索病毒主要攻击金蝶…...

2023年阿里云双11优惠来了,单笔最高可省2400元!
2023年阿里云双11活动终于来了,阿里云推出了金秋云创季活动,新用户、老用户、企业用户均可领取金秋上云礼包,单笔最高立减2400元! 一、活动时间 满减券领取时间:2023年10月27日0点0分0秒-2023年11月30日23点59分59秒 …...

k8s资源调度
默认的情况下,一个pod在哪个node节点上运行,是由scheduler组件采取对应的算法计算出来的,这个过程是不受人工控制的,在实际的使用过程中,这不能够满足客观的场景,针对这样的情况,k8s 提供了四大…...

【Netty专题】用Netty手写一个远程长连接通信框架
目录 前言阅读对象阅读导航前置知识课程内容一、使用Netty实现一个通信框架需要考虑什么问题二、通信框架功能设计2.1 功能描述2.2 通信模型2.3 消息体定义2.4 心跳机制2.5 重连机制*2.6 Handler的组织顺序2.7 交互式调试 三、代码实现:非必要。感兴趣的自行查看3.1…...

注册商标被宣告为无效的5种情形
1.与已注册商标过于相似:商标法规定商标应具备独立性和显著性,能够与已注册商标有效区分开来。如果新申请商标与已注册商标过于相似,可能会导致商标无效。相似性包括外观形状、字母组合、发音或含义等方面的相似度。 2.缺乏独特性和显著性&am…...

C#在类中申明成员数组变量的格式
在C#中,在类中申明成员数组变量的格式如下: 访问修饰符 数据类型[] 变量名; 其中: 访问修饰符表示该成员变量的访问权限,可以是public、private、protected、internal等修饰符之一;数据类型表示数组元素的类型&…...

通俗易懂理解CNN卷积神经网络模型的参数量和计算量
一、参考资料 神经网络参数量、计算量(FLOPS)、内存访问量(MAC)计算详解 5种方法获取Torch网络模型参数量计算量等信息 二、参数量与计算量相关介绍 1. 为什么要统计模型参数量和计算量 好的网络模型不仅要求精度准࿰…...

npm工具使用方法介绍
npm 使用方法 文章目录 npm 使用方法安装 npm初始化项目安装依赖更新依赖卸载依赖发布包其他命令下载相关 npm 是 Node.js 的包管理工具,用于管理 Node.js 项目的依赖关系。npm 提供了丰富的命令和功能,可以帮助开发者快速构建和部署 Node.js 应用程序。…...

使用Python批量修改PPT字体和提取全部文字到word
目录 一、修改PPT中每一页的字体二、将文本框中的字都放到word里 将一份PPT的每一页字体、大小、是否加粗都统一,是一个常见需求。特别是字体统一是高频、热点需求。在python操控PPT常用库python-pptx中有一个bug,对字体的修改只能修改数字和英文字母&am…...

Debezium系列之:在K8s集群中部署Debezium Operator运行Debezium Server的详细步骤
Debezium系列之:在K8s集群中部署Debezium Operator运行Debezium Server的详细步骤 一、背景二、目标三、准备环境四、运行本地 Kubernetes 集群五、认识K8s集群部署工具kind六、认识Kubernetes Operator六、安装docker七、安装kind八、安装kubectl九、使用kind创建k8s集群十、…...

并行和并发有什么区别?
并行和并发 并行和并发最早其实描述的是 Java 并发编程里面的概念。他们强调的是 CPU 处理任务的能力。简单来说: 并发,就是同一个时刻,CPU 能够处理的任务数量,并且对于应用程序来说,不会出现卡顿现象。并行&#x…...

第2篇 机器学习基础 —(3)机器学习库之Scikit-Learn
前言:Hello大家好,我是小哥谈。Scikit-Learn(简称Sklearn)是Python 的第三方模块,它是机器学习领域当中知名的Python 模块之一,它对常用的机器学习算法进行了封装,包括回归(Regressi…...

正点原子嵌入式linux驱动开发——Linux SPI驱动
到目前为止的学习笔记,已经介绍了Linux下的platform总线框架、I2C总线框架,本篇笔记将介绍Linux下的SPI总线框架。与I2C总线一样,SPI是物理总线,也是一种很常用的串行通信协议。本章就来学习如何在Linux下编写SPI总线接口的设备驱…...

【计算机视觉】相机
文章目录 一、原始的相机:针孔相机(Pinhole Camera)二、针孔相机的数学模型三、真实相机四、透镜的缺陷 我的《计算机视觉》系列参考UC Berkeley的CS180课程,PPT可以在课程主页看到。 成像原理 一、原始的相机:针孔相机…...

Spring的条件注解,一篇文章盘得清清楚楚明明白白
前言 在Spring中,条件注解可根据特定的条件来决定是否创建或配置Bean,这些条件可以基于类、属性、环境等因素。通过使用条件注解,我们可以在Spring容器中更加灵活地管理和控制组件的创建和注入,帮助我们更加灵活地管理和控制Bean…...

Oracle (7)Online Redo Log Files
目录 一、Oracle Online Redo Log Files及其相关内容介绍 1、Online Redo Log Files简介 2、Online Redo Log Files特点 3、Online Redo Log Files文件组 4、多路复用文件 5、联机重做日志文件工作方式 6、LGWR什么时候写重做 7、LS和LSN 8、删除Redo文件成员 9、删除…...

物联网AI MicroPython传感器学习 之 PAJ7620手势识别传感器
学物联网,来万物简单IoT物联网!! 一、产品简介 手势识别传感器PAJ7620u2是一款集成3D手势识别和运动跟踪为一体的交互式传感器,传感器可以在有效范围内识别手指的顺时针/逆时针转动方向和手指的运动方向等。它可以识别13种手势&a…...

Affinity Photo 2.2.1 高端专业Mac PS修图软件
Affinity Photo Mac中文版是一款面向专业摄影师和其他视觉艺术家的专业图像处理软件,拥有众多专业高端功能,如Raw处理、PSD导入和导出、16位通道的编辑和ICC色彩管理以及兼容大量图片格式。是现在最快、最顺、最精准的专业修图软件。Affinity Photo Mac是…...

微服务-统一网关Gateway
网关的作用 对用户请求做身份认证、权限校验将用户请求路由到微服务,并实现负载均衡对用户请求做限流 搭建网关服务 创建新module,命名为Gateway,引入依赖(1.SpringCloudGateway依赖;2.Eureka客户端依赖或者nacos的服…...

【音视频|wav】wav音频文件格式详解
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

网络工程综合试题(二)
1. SR技术有哪些缺点? SR(Segment Routing)技术是一种新兴的网络编程技术,它具有很多优点,但也存在一些缺点,包括: 部署复杂性:SR技术需要对网络进行改造和升级,包括更新…...

Android JNI/NDK 入门从一到二
1. 前言 最基础的创建JNI接口的操作,可以直接看这篇文章 : 第一个Android JNI工程, 本文会基于掌握创建JNI接口的操作的基础之上,来入门JNI/NDK。 2. 在JNI中打印日志 2.1 添加log模块 记得CMake中有log模块,不然编译不过 ta…...

吃瓜教程3|决策树
ID3算法 假定当前样本集合D中第k类样本所占比例为pk,则样本集合D的信息熵定义为 信息增益 C4.5算法 ID3算法存在一个问题,就是偏向于取值数目较多的属性,因此C4.5算法使用了“增益率”(gain ratio)来选择划分属性 CA…...

springboot动态数据源【非伪数据源】
说明:本文章的数据源不是在配置文件中配置两个或多个数据源,在业务方面对这些数据源来回切换,本文章中的数据源是可以动态添加,修改,切换的,废话不多说。 先看工程图: 1.pom.xml文件 <?x…...

如何改善设备综合效率(OEE)并提高工厂的生产力
在现代制造业中,提高设备综合效率(Overall Equipment Efficiency,OEE)是企业追求高效生产和优化生产能力的重要目标之一。OEE是一个关键的绩效指标,可以帮助企业评估设备的利用效率、生产效率和质量水平。本文将从三个…...

一文接入Android阿里Sophix热更新
最近公司项目渐趋成熟,已经不需要经常更新版本,并且更新版本对客户的影响特别大,但是日常维护难免需要更新代码,因此热修复的技术,就比较迫切了。 经过一段时间的对比,我们最终决定使用阿里的Sophix方案&am…...

【高阶数据结构】并查集和图
目录 1.数据结构--并查集 2.数据结构--图 1.图的基础概念 2.图的简单实现 2.1.邻接矩阵的图实现 2.2.邻接表的图实现 2.3.图的DFS和BFS 2.4.最小生成树 2.4.1.Kruskal(克鲁斯卡尔算法) 2.4.2.Prim(普里姆算法) 2.5.最短路径 2.5.1.Dijkstra(…...

Git 提交时提示 GPG 签名错误
本来应该一切都是正常的,但今天提交的时候提示 GPG 签名错误。 错误的信息就是 GPG 签名失败。 gpg: skipped "942395299055675C": No secret key gpg: signing failed: No secret key error: gpg failed to sign the data fatal: failed to write commi…...