一文让你彻底了解Linux内核文件系统
一,文件系统特点
- 文件系统要有严格的组织形式,使得文件能够以块为单位进行存储。
- 文件系统中也要有索引区,用来方便查找一个文件分成的多个块都存放在了什么位置。
- 如果文件系统中有的文件是热点文件,近期经常被读取和写入,文件系统应该有缓存层。
- 文件应该用文件夹的形式组织起来,方便管理和查询。
- Linux内核要在自己的内存里面维护一套数据结构,来保存哪些文件被哪些进程打开和使用。
总体来说,文件系统的主要功能梳理如下:
二,EXT系列的文件系统的格式
2.1,inode与块的存储
硬盘分成相同大小的单元,我们称为块(Block)。一块的大小是扇区大小的整数倍,默认是4K。在格式化的时候,这个值是可以设定的。
一大块硬盘被分成了一个个小的块,用来存放文件的数据部分。这样一来,如果我们像存放一个文件,就不用给他分配一块连续的空间了。我们可以分散成一个个小块进行存放。这样就灵活得多,也比较容易添加、删除和插入数据。
inode就是文件索引的意思,我们每个文件都会对应一个inode;一个文件夹就是一个文件,也对应一个inode。
2.2,Exents是一个树状结构:
每个节点都有一个头,ext4_extent_header可以用来描述某个节点:
struct ext4_extent_header {__le16 eh_magic; /* probably will support different formats */__le16 eh_entries; /* number of valid entries */__le16 eh_max; /* capacity of store in entries */__le16 eh_depth; /* has tree real underlying blocks? */__le32 eh_generation; /* generation of the tree */
};
eh_entries表示这个节点里面有多少项。这里的项分两种,如果是叶子节点,这一项会直接指向硬盘上的连续块的地址,我们称为数据节点ext4_extent;如果是分支节点,这一项会指向下一层的分支节点或者叶子节点,我们称为索引节点ext4_extent_idx。这两种类型的项的大小都是12个byte。
/** This is the extent on-disk structure.* It's used at the bottom of the tree.*/
struct ext4_extent {__le32 ee_block; /* first logical block extent covers */__le16 ee_len; /* number of blocks covered by extent */__le16 ee_start_hi; /* high 16 bits of physical block */__le32 ee_start_lo; /* low 32 bits of physical block */
};
/** This is index on-disk structure.* It's used at all the levels except the bottom.*/
struct ext4_extent_idx {__le32 ei_block; /* index covers logical blocks from 'block' */__le32 ei_leaf_lo; /* pointer to the physical block of the next ** level. leaf or next index could be there */__le16 ei_leaf_hi; /* high 16 bits of physical block */__u16 ei_unused;
};
如果文件不大,inode里面的i_block中,可以放得下一个ext4_extent_header和4项ext4_extent。所以这个时候,eh_depth为0,也即inode里面的就是叶子节点,树高度为0。
如果文件比较大,4个extent放不下,就要分裂成为一棵树,eh_depth>0的节点就是索引节点,其中根节点深度最大,在inode中。最底层eh_depth=0的是叶子节点。
除了根节点,其他的节点都保存在一个块4k里面,4k扣除ext4_extent_header的12个byte,剩下的能够放340项,每个extent最大能表示128MB的数据,340个extent会使你的表示的文件达到42.5GB。
2.3,inode位图和块位图
inode的位图大小为4k,每一位对应一个inode。如果是1,表示这个inode已经被用了;如果是0,则表示没被用。block的位图同理。
在Linux操作系统里面,想要创建一个新文件,会调用open函数,并且参数会有O_CREAT。这表示当文件找不到的时候,我们就需要创建一个。那么open函数的调用过程大致是:要打开一个文件,先要根据路径找到文件夹。如果发现文件夹下面没有这个文件,同时又设置了O_CREAT,就说明我们要在这个文件夹下面创建一个文件。
创建一个文件,那么就需要创建一个inode,那么就会从文件系统里面读取inode位图,然后找到下一个为0的inode,就是空闲的inode。对于block位图,在写入文件的时候,也会有这个过程。
2.4,文件系统的格式
数据块的位图是放在一个块里面的,共4k。每位表示一个数据块,共可以表示
个数据块。如果每个数据块也是按默认的4K,最大可以表示空间为
个byte,也就是128M,那么显然是不够的。这个时候就需要用到块组,数据结构为ext4_group_desc,这里面对于一个块组里的inode位图bg_inode_bitmap_lo、块位图bg_block_bitmap_lo、inode列表bg_inode_table_lo,都有相应的成员变量。
这样一个个块组,就基本构成了我们整个文件系统的结构。因为块组有多个,块组描述符也同样组成一个列表,我们把这些称为块组描述符表。
资料直通车:最新Linux内核源码资料文档+视频资料https://docs.qq.com/doc/DTmFTc29xUGdNSnZ2
内核学习地址:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈https://ke.qq.com/course/4032547?flowToken=1040236
我们还需要有一个数据结构,对整个文件系统的情况进行描述,这个就是超级块ext4_super_block。里面有整个文件系统一共有多少inode,s_inodes_count;一共有多少块,s_blocks_count_lo,每个块组有多少inode,s_inodes_per_group,每个块组有多少块,s_blocks_per_group等。这些都是这类的全局信息。
最终,整个文件系统格式就是下面这个样子
默认情况下,超级块和块组描述符表都有副本保存在每一个块组里面。防止这些数据丢失了,导致整个文件系统都打不开了。
由于如果每个块组里面都保存一份完整的块组描述符表,一方面很浪费空间;另一个方面,由于一个块组最大128M,而块组描述符表里面有多少项,这就限制了有多少个块组,128M * 块组的总数目是整个文件系统的大小,就被限制住了。
因此引入Meta Block Groups特性。
首先,块组描述符表不会保存所有块组的描述符了,而是将块组分成多个组,我们称为元块组(Meta Block Group)。每个元块组里面的块组描述符表仅仅包括自己的,一个元块组包含64个块组,这样一个元块组中的块组描述符表最多64项。
我们假设一共有256个块组,原来是一个整的块组描述符表,里面有256项,要备份就全备份,现在分成4个元块组,每个元块组里面的块组描述符表就只有64项了,这就小多了,而且四个元块组自己备份自己的。
根据图中,每一个元块组包含64个块组,块组描述符表也是64项,备份三份,在元块组的第一个,第二个和最后一个块组的开始处。
如果开启了sparse_super特性,超级块和块组描述符表的副本只会保存在块组索引为0、3、5、7的整数幂里。所以上图的超级块只在索引为0、3、5、7等的整数幂里。
三,目录的存储格式
其实目录本身也是个文件,也有inode。inode里面也是指向一些块。和普通文件不同的是,普通文件的块里面保存的是文件数据,而目录文件的块里面保存的是目录里面一项一项的文件信息。这些信息我们称为ext4_dir_entry。
在目录文件的块中,最简单的保存格式是列表,每一项都会保存这个目录的下一级的文件的文件名和对应的inode,通过这个inode,就能找到真正的文件。第一项是“.”,表示当前目录,第二项是“…”,表示上一级目录,接下来就是一项一项的文件名和inode。
如果在inode中设置EXT4_INDEX_FL标志,那么就表示根据索引查找文件。索引项会维护一个文件名的哈希值和数据块的一个映射关系。
如果我们要查找一个目录下面的文件名,可以通过名称取哈希。如果哈希能够匹配上,就说明这个文件的信息在相应的块里面。然后打开这个块,如果里面不再是索引,而是索引树的叶子节点的话,那里面还是ext4_dir_entry的列表,我们只要一项一项找文件名就行。通过索引树,我们可以将一个目录下面的N多的文件分散到很多的块里面,可以很快地进行查找。
四,Linux中的文件缓存
4.1ext4文件系统层
对于ext4文件系统来讲,内核定义了一个ext4_file_operations
const struct file_operations ext4_file_operations = {
.......read_iter = ext4_file_read_iter,.write_iter = ext4_file_write_iter,
......
}
ext4_file_read_iter会调用generic_file_read_iter,ext4_file_write_iter会调用__generic_file_write_iter
ssize_t
generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
{
......if (iocb->ki_flags & IOCB_DIRECT) {
......struct address_space *mapping = file->f_mapping;
......retval = mapping->a_ops->direct_IO(iocb, iter);}
......retval = generic_file_buffered_read(iocb, iter, retval);
}ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
......if (iocb->ki_flags & IOCB_DIRECT) {
......written = generic_file_direct_write(iocb, from);
......} else {
......written = generic_perform_write(file, from, iocb->ki_pos);
......}
}
generic_file_read_iter和__generic_file_write_iter有相似的逻辑,就是要区分是否用缓存。因此,根据是否使用内存做缓存,我们可以把文件的I/O操作分为两种类型。
第一种类型是缓存I/O。大多数文件系统的默认I/O操作都是缓存I/O。对于读操作来讲,操作系统会先检查,内核的缓冲区有没有需要的数据。如果已经缓存了,那就直接从缓存中返回;否则从磁盘中读取,然后缓存在操作系统的缓存中。对于写操作来讲,操作系统会先将数据从用户空间复制到内核空间的缓存中。这时对用户程序来说,写操作就已经完成。至于什么时候再写到磁盘中由操作系统决定,除非显式地调用了sync同步命令。
第二种类型是直接IO,就是应用程序直接访问磁盘数据,而不经过内核缓冲区,从而减少了在内核缓存和用户程序之间数据复制。
如果在写的逻辑__generic_file_write_iter里面,发现设置了IOCB_DIRECT,则调用generic_file_direct_write,里面同样会调用address_space的direct_IO的函数,将数据直接写入硬盘。
带缓存的写入操作
我们先来看带缓存写入的函数generic_perform_write。
ssize_t generic_perform_write(struct file *file,struct iov_iter *i, loff_t pos)
{struct address_space *mapping = file->f_mapping;const struct address_space_operations *a_ops = mapping->a_ops;do {struct page *page;unsigned long offset; /* Offset into pagecache page */unsigned long bytes; /* Bytes to write to page */status = a_ops->write_begin(file, mapping, pos, bytes, flags,&page, &fsdata);copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);flush_dcache_page(page);status = a_ops->write_end(file, mapping, pos, bytes, copied,page, fsdata);pos += copied;written += copied;balance_dirty_pages_ratelimited(mapping);} while (iov_iter_count(i));
}
循环中主要做了这几件事:
- 对于每一页,先调用address_space的write_begin做一些准备;
- 调用iov_iter_copy_from_user_atomic,将写入的内容从用户态拷贝到内核态的页中;
- 调用address_space的write_end完成写操作;
- 调用balance_dirty_pages_ratelimited,看脏页是否太多,需要写回硬盘。所谓脏页,就是写入到缓存,但是还没有写入到硬盘的页面。
对于第一步,调用的是ext4_write_begin来说,主要做两件事:
第一做日志相关的工作
ext4是一种日志文件系统,是为了防止突然断电的时候的数据丢失,引入了日志(Journal)模式。日志文件系统比非日志文件系统多了一个Journal区域。文件在ext4中分两部分存储,一部分是文件的元数据,另一部分是数据。元数据和数据的操作日志Journal也是分开管理的。你可以在挂载ext4的时候,选择Journal模式。这种模式在将数据写入文件系统前,必须等待元数据和数据的日志已经落盘才能发挥作用。这样性能比较差,但是最安全。
另一种模式是order模式。这个模式不记录数据的日志,只记录元数据的日志,但是在写元数据的日志前,必须先确保数据已经落盘。这个折中,是默认模式。
还有一种模式是writeback,不记录数据的日志,仅记录元数据的日志,并且不保证数据比元数据先落盘。这个性能最好,但是最不安全。
第二调用
grab_cache_page_write_begin来,得到应该写入的缓存页。
struct page *grab_cache_page_write_begin(struct address_space *mapping,pgoff_t index, unsigned flags)
{struct page *page;int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;page = pagecache_get_page(mapping, index, fgp_flags,mapping_gfp_mask(mapping));if (page)wait_for_stable_page(page);return page;
}
在内核中,缓存以页为单位放在内存里面,每一个打开的文件都有一个struct file结构,每个struct file结构都有一个struct address_space用于关联文件和内存,就是在这个结构里面,有一棵树,用于保存所有与这个文件相关的的缓存页。
对于第二步,调用
iov_iter_copy_from_user_atomic。先将分配好的页面调用kmap_atomic映射到内核里面的一个虚拟地址,然后将用户态的数据拷贝到内核态的页面的虚拟地址中,调用kunmap_atomic把内核里面的映射删除。
size_t iov_iter_copy_from_user_atomic(struct page *page,struct iov_iter *i, unsigned long offset, size_t bytes)
{char *kaddr = kmap_atomic(page), *p = kaddr + offset;iterate_all_kinds(i, bytes, v,copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,v.bv_offset, v.bv_len),memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len))kunmap_atomic(kaddr);return bytes;
}
第三步中,调用ext4_write_end完成写入。这里面会调用ext4_journal_stop完成日志的写入,会调用block_write_end->__block_commit_write->mark_buffer_dirty,将修改过的缓存标记为脏页。可以看出,其实所谓的完成写入,并没有真正写入硬盘,仅仅是写入缓存后,标记为脏页。
第四步,调用
balance_dirty_pages_ratelimited,是回写脏页
/*** balance_dirty_pages_ratelimited - balance dirty memory state* @mapping: address_space which was dirtied** Processes which are dirtying memory should call in here once for each page* which was newly dirtied. The function will periodically check the system's* dirty state and will initiate writeback if needed.*/
void balance_dirty_pages_ratelimited(struct address_space *mapping)
{struct inode *inode = mapping->host;struct backing_dev_info *bdi = inode_to_bdi(inode);struct bdi_writeback *wb = NULL;int ratelimit;
......if (unlikely(current->nr_dirtied >= ratelimit))balance_dirty_pages(mapping, wb, current->nr_dirtied);
......
}
在balance_dirty_pages_ratelimited里面,发现脏页的数目超过了规定的数目,就调用balance_dirty_pages->wb_start_background_writeback,启动一个背后线程开始回写。
另外还有几种场景也会触发回写:
- 用户主动调用sync,将缓存刷到硬盘上去,最终会调用wakeup_flusher_threads,同步脏页;
- 当内存十分紧张,以至于无法分配页面的时候,会调用free_more_memory,最终会调用wakeup_flusher_threads,释放脏页;
- 脏页已经更新了较长时间,时间上超过了设定时间,需要及时回写,保持内存和磁盘上数据一致性。
4.2,带缓存的读操作
看带缓存的读,对应的是函数generic_file_buffered_read。
static ssize_t generic_file_buffered_read(struct kiocb *iocb,struct iov_iter *iter, ssize_t written)
{struct file *filp = iocb->ki_filp;struct address_space *mapping = filp->f_mapping;struct inode *inode = mapping->host;for (;;) {struct page *page;pgoff_t end_index;loff_t isize;page = find_get_page(mapping, index);if (!page) {if (iocb->ki_flags & IOCB_NOWAIT)goto would_block;page_cache_sync_readahead(mapping,ra, filp,index, last_index - index);page = find_get_page(mapping, index);if (unlikely(page == NULL))goto no_cached_page;}if (PageReadahead(page)) {page_cache_async_readahead(mapping,ra, filp, page,index, last_index - index);}/** Ok, we have the page, and it's up-to-date, so* now we can copy it to user space...*/ret = copy_page_to_iter(page, offset, nr, iter);}
}
在generic_file_buffered_read函数中,我们需要先找到page cache里面是否有缓存页。如果没有找到,不但读取这一页,还要进行预读,这需要在page_cache_sync_readahead函数中实现。预读完了以后,再试一把查找缓存页。
如果第一次找缓存页就找到了,我们还是要判断,是不是应该继续预读;如果需要,就调用
page_cache_async_readahead发起一个异步预读。
最后,copy_page_to_iter会将内容从内核缓存页拷贝到用户内存空间。
相关文章:

一文让你彻底了解Linux内核文件系统
一,文件系统特点 文件系统要有严格的组织形式,使得文件能够以块为单位进行存储。文件系统中也要有索引区,用来方便查找一个文件分成的多个块都存放在了什么位置。如果文件系统中有的文件是热点文件,近期经常被读取和写入…...

解决前端组件下拉框选择功能失效问题
问题: 页面下拉框选择功能失效 现象: 在下拉框有默认值的情况下,点击下拉框的其他值,发现并没有切换到其他值 但是在下拉框没默认值的情况下,功能就正常 原因 select 已经绑定选项(有默认值) 在…...

Linux_vim编辑器入门级详细教程
前言(1)vim编辑器其实本质上就是对文本进行编辑,比如在.c文件中改写程序,在.txt文件写笔记什么的。一般来说,我们可以在windows上对文本进行编译,然后上传给Linux。但是有时候我们可能只是对文本进行简单的…...

TCP 的演化史-TCP 是一个过渡
TCP 诞生于 1970 年代早期,彼时没有分组交换网的大规模应用,彼时绝大多数通信都在使用电话,电报,电挂等电路交换技术。 诞生在这种环境下的技术不可能脱离时代的影响,如果一个孩子出生在一个父母关系冷漠的家庭&#x…...

Flask
Flask第三方组件非常全,适合小型 API服务类项目,但第三方组件运行稳定性相对Django差。 基础知识 Flask安装 pip install flask2.0.3Flask库文件 Jinjia2:模板渲染库Markupsafe:返回安全标签 只要Flask返回模板或者标签时都会…...

SAP系统与MES系统的数据协同技术方案
1.MES介绍 本文中提到的MES系统是在西门子公司的SIMATIC IT平台上开发完成。所有的应用子系统进行统一分析、统一设计、统一开发,利用统一的开发平台和数据库系统,保证了管理系统的集成性、高效性。 2.数据协同接口包含的…...

2018年蓝桥杯省赛试题-5道(Python)
文章目录一、日志统计思考二、递增三元组思考三、螺旋折线思考四、乘积最大思考五、全球变暖思考尾声提示:以下是本篇文章正文内容,下面案例可供参考 一、日志统计 题目描述 小明维护着一个程序员论坛。 现在他收集了一份"点赞"日志…...

Python稀疏矩阵最小二乘法
文章目录最小二乘法返回值测试最小二乘法 scipy.sparse.linalg实现了两种稀疏矩阵最小二乘法lsqr和lsmr,前者是经典算法,后者来自斯坦福优化实验室,据称可以比lsqr更快收敛。 这两个函数可以求解AxbAxbAxb,或arg minx∥Ax−b…...

mac本前端Homebrew下载,操作
1、打开电脑终端 2、下载Homebrew,在终端中输入 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"开始下载Homebrew,因为这个地址是国外网站,下载失败的话,输入…...

Linux系统之查看进程监听端口方法
Linux系统之查看进程监听端口方法一、端口监听介绍二、使用netstat命令1.netstat命令介绍2.netstat帮助3.安装netstat工具4.列出所有监听 tcp 端口5.显示TCP端口的统计信息6.查看某个服务监听端口三、使用ss命令1.ss命令介绍2.ss命令帮助3.查看某个服务监听端口四、使用lsof命令…...

使用命令别名一键启动arthas
1. 使用命令别名启动arthas 确保单板上有jdk和arthas jdk目录:/home/xinliushijian/arthas/jdk arthas目录;/home/xinliushijian/arthas su xinliushijian编写脚本messi.sh cd /home/xinliushijian/arthas vi messi.sh 内容如下: #!/bin/ba…...

python+pytest接口自动化(2)-HTTP协议基础
HTTP协议简介HTTP 即 HyperText Transfer Protocol(超文本传输协议),是互联网上应用最为广泛的一种网络协议。所有的 WWW 文件都必须遵守这个标准。设计 HTTP 最初的目的是为了提供一种发布和接收 HTML 页面的方法。HTTP 协议在 OSI 模型中属…...

操作系统权限提升(十五)之绕过UAC提权-基于白名单DLL劫持绕过UAC提权
系列文章 操作系统权限提升(十二)之绕过UAC提权-Windows UAC概述 操作系统权限提升(十三)之绕过UAC提权-MSF和CS绕过UAC提权 操作系统权限提升(十四)之绕过UAC提权-基于白名单AutoElevate绕过UAC提权 注:阅读本编文章前,请先阅读系列文章,以…...

非常好看的html网页个人简历
一. 前言 文末获取gitee链接 在前几天逛b站的时候,发现了个比较实用的东西-----个人简介网页版,相当于网页版的个人简历,相较于PDF形式的,网页版所能呈现内容更加丰富,而且更加美观,在BOOS上被HR小姐姐要…...

轻量级网络模型ShuffleNet V2
在学习ShuffleNet V2内容前需要简单了解卷积神经网络和MobileNet,以及Shuffnet V1的相关内容,大家可以出门左转,去看我之前的几篇博客MobileNet发展脉络(V1-V2-V3),轻量级网络模型ShuffleNet V1🆗ÿ…...

分享美容美发会员管理系统功能的特点_美容美发会员管理系统怎么做
人们越来越关心美发,美发行业发展迅速,小程序可以连接在线场景,许多美发院也开发了会员卡管理系统。那么一个实用的美发会员管理系统怎么制作呢?它有什么功能?我们一起来看看~(干货满满,耐心看完…...

Oracle-05-DCL篇
🏆一、简介 Oracle的DCL代表数据库控制语言,用于管理数据库对象的访问和安全性。DCL的两个主要命令是GRANT和REVOKE。 GRANT命令用于授予用户或角色对数据库对象的访问权限,例如表、视图或存储过程。GRANT命令的语法如下: GRANT privilege_name [, privilege_name]... …...

tess4j简单使用入门
tess4j下载 下载地址: https://sourceforge.net/projects/tess4j/ 不要直接下载,点击files,然后下载最新版 下载解压后放到指定的目录即可,这里放到d:\jar目录下 tess4j根目录: d:\jar\tess4j tess4j使用 把test4j项目目录中dist和lib目录下的所有jar包导入到需要的项目中…...

WebGPU学习(4)---使用 UniformBuffer
接下来让我们使用 UniformBuffer。UniformBuffer 是一个只读内存区域,可以在着色器上访问。 这次,我们将传递给着色器的矩阵存储在 UniformBuffer 中。演示示例 1.在顶点着色器中的 UniformBuffer 这次我们在顶点着色器里定义一个名为Uniforms的新结构体…...

Http客户端Feign-远程调用
Feign的使用步骤 引入依赖添加EnableFeignClients注解编写FeignClient接口使用FeignClient中定义的方法代替RestTemplate Feign的日志配置 1.方式一是配置文件,feign.client.config.xxx.loggerLevel 如果xxx是default则代表全局如果xxx是服务名称,例如userservi…...

RK3568镜像的拆包和打包
文章目录 前言一、window上分包和打包分包打包二、Linux上分包和打包分包打包总结前言 本文记录在win10上利用瑞芯微提供的工具进行分包和打包,同样也有Linux教程 提示:以下是本篇文章正文内容,下面案例可供参考 一、window上分包和打包 分包 window下一般直接利用工具即…...

《设计模式》适配器模式
《设计模式》适配器模式 适配器(Adapter)是一种结构型设计模式,它允许我们将一个类的接口转换成另一个类的接口,从而使得原本由于接口不兼容而无法合作的类能够一起工作。适配器模式通常用于以下情况: 在已有的类中添…...

linux 随笔 5-服务管理
0. 装到虚拟机与物理机,感觉各有各的不方便 Linux下systemctl命令和service、chkconfig命令的区别 1. service 根据/etc/init.d目录下的配置,做服务相关的: 启动停止重新启动关闭系统服务 2. chkconfig 用于维护 /etc/rc[0-6].d 的命令…...

【java基础】枚举类(enum)
文章目录基本介绍快速使用字段、方法、构造器枚举类方法toString方法valueOf方法values方法ordinal方法基本介绍 在java中有一种特殊的类型就是枚举类,对于一个有限的有固定值的集合,我们就可以考虑使用枚举类来进行表示,例如服装的大小为 小…...

Linux2
(1)root用户的主目录: (3)查看 (4)远程登陆系统:CentOS7上使用ifconfig查看IP,使用putty远程登陆 (5)查询目前用户登录情况:who命令…...

C语言基础应用(二)数据的转换与输入输出
学习了C语言的基本数据类型后,我们可能会想这些数据如何进行运算,是否可以让不同类型的数据直接进行运算呢? 一、数据类型转换 1.1 int类型与float类型之间的转换 int i 5; // j值为2.000000 因为左右操作数均为整型float j i/2; // …...

C# 用NPOI读取EXCEL
1. 复制DLL文件 ICSharpCode.SharpZipLib.dll NPOI.dll NPOI.OOXML.dll NPOI.OpenXml4Net.dll NPOI.OpenXmlFormats.dll 2. 在工程中添加引用 3. using System.IO; using NPOI.HSSF.UserModel; using NPOI.XSSF.UserModel; using NPOI.SS.UserModel; using NPOI.OpenXml4Ne…...

《高性能MySQL》——MySQL基准测试(笔记)
文章目录二、MySQL基准测试2.1 为什么需要基准测试2.2 基准测试的策略2.2.1 测试何种指标2.3 基准测试方法2.3.1设计和规划基准测试2.3.2 基准测试应该运行多长时间2.3.3 获取系统性能和状态2.3.4 获得准确的测试结果2.3.5 运行基准测试并分析结果2.3.6 绘图的重要性2.4 基准测…...

微服务注册到Nacos后如何读取外网IP
背景 微服务部署后,各服务是需要相互间调用的,其中服务A在去调用服务B的时候发现无法调用成功。其中服务注册和发现中心以及配置中心使用的是Nacos。Nacos客户端在注册服务时会从机器网卡中选择其中一个IP来注册,当我们要部署的机器存在多个…...

【华为OD机试模拟题】用 C++ 实现 - 匿名信(2023.Q1)
最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 货币单位换算(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 选座位(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 停车场最大距离(2023.Q1) 【华为OD机试模拟题】用 C++ 实现 - 重组字符串(2023.Q1) 【华为OD机试模…...