使用ControlNet生成视频(Pose2Pose)
目录
ControlNet 介绍
ControlNet 14种模型分别是用来做什么的
ControlNet 运行环境搭建
用到的相关模型地址
ControlNet 介绍
ControlNet 是一种用于控制扩散模型的神经网络结构,可以通过添加额外的条件来实现对图像生成的控制¹²。它通过将神经网络块的权重复制到一个“锁定”的副本和一个“可训练”的副本来实现这一点。 “可训练”的副本学习你的条件,而“锁定”的副本保留你的模型。这样,使用小规模的图像对数据集进行训练不会破坏生产就绪的扩散模型。
ControlNet 的创新之处在于它解决了空间一致性的问题。以前,没有有效的方法可以告诉 AI 模型保留输入图像的哪些部分,而 ControlNet 通过引入一种方法来实现这一点,使得稳定扩散模型能够使用额外的输入条件来指导模型的行为。
ControlNet 可以通过重复上述简单的结构 14 次来控制稳定扩散。这样,ControlNet 就可以重用 SD 编码器作为一个深层、强大、稳健和强大的骨干网络,来学习多样化的控制¹。
ControlNet 可以使用各种技术来对输入图像和提示进行条件化,例如姿态、边缘检测、深度图等。它可以让我们通过不同的方式来控制最终的图像生成,例如涂鸦、交互式分割、内容混合等。
ControlNet 14种模型分别是用来做什么的
- Canny: 用于生成边缘检测图像,可以用于AI绘画或者风格迁移。
- Depth: 用于生成深度图像,可以用于3D重建或者虚拟现实。
- Openpose: 用于生成人体姿态估计图像,可以用于动作识别或者动画制作。
- Style: 用于生成不同风格的图像,可以用于艺术创作或者滤镜效果。
- MLSD: 用于生成直线检测图像,可以用于几何变换或者透视校正。
- Normal: 用于生成法线图像,可以用于光照模拟或者材质编辑。
- Seg: 用于生成分割图像,可以用于物体识别或者背景替换。
- Inpaint: 用于生成修复图像,可以用于去除水印或者填补空缺。
- Lineart: 用于生成线稿图像,可以用于漫画制作或者素描练习。
- Lineart_anime: 用于生成动漫风格的线稿图像,可以用于二次元创作或者上色。
- Scribble: 用于生成涂鸦图像,可以用于草图设计或者儿童游戏。
- Softedge: 用于生成软边缘图像,可以用于模糊效果或者边缘检测。
- Shuffle: 用于生成随机排列的图像,可以用于拼图游戏或者视觉混乱。
- IP2P: 用于生成图片到图片的转换,可以用于风格迁移或者内容变换。
ControlNet 运行环境搭建
- 克隆项目
git clone --recursive https:\\github.com\lllyasviel/ControlNet-v1-1-nightly
- 创建虚拟环境
cd ControlNet-v1-1-nightly
conda env create -f=environment.yml
- 试运行depth模型
首先去huggingface下载,control_v11flp_sd15_depth.pth模型和v1-5-pruned.ckpt两个模型放置在models目录下,运行代码
python gradio_depth.py
浏览器打开http://127.0.0.1:7860/

- 使用视频生成连续的帧并合成视频文件
生成得太慢了,这里只生成100帧,模型用的原生stablediffusion的模型,对人物的绘制不太好,用经过lora训练的模型生成的视频更好
from share import *
import configimport cv2
import einops
import gradio as gr
import sys
import numpy as np
import torch
import randomfrom pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.openpose import OpenposeDetector
from cldm.model import create_model, load_state_dict
from cldm.ddim_hacked import DDIMSamplerpreprocessor = Nonemodel_name = 'control_v11p_sd15_openpose'
model = create_model(f'./models/{model_name}.yaml').cpu()
model.load_state_dict(load_state_dict('./models/v1-5-pruned.ckpt', location='cuda'), strict=False)
model.load_state_dict(load_state_dict(f'./models/{model_name}.pth', location='cuda'), strict=False)
model = model.cuda()
ddim_sampler = DDIMSampler(model)# def process(det, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, guess_mode, strength, scale, seed, eta):
def process(input_image, prompt, det="Openpose_Full", seed=1, num_samples=1, detect_resolution=512, image_resolution=512, guess_mode=False, a_prompt="best quality", n_prompt="lowres, bad anatomy, bad hands, cropped, worst quality", strength=1.0, ddim_steps=20, eta=1.0, scale=9.0):global preprocessorif 'Openpose' in det:if not isinstance(preprocessor, OpenposeDetector):preprocessor = OpenposeDetector()with torch.no_grad():input_image = HWC3(input_image)if det == 'None':detected_map = input_image.copy()else:detected_map = preprocessor(resize_image(input_image, detect_resolution), hand_and_face='Full' in det)detected_map = HWC3(detected_map)img = resize_image(input_image, image_resolution)H, W, C = img.shapedetected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0control = torch.stack([control for _ in range(num_samples)], dim=0)control = einops.rearrange(control, 'b h w c -> b c h w').clone()if seed == -1:seed = random.randint(0, 65535)seed_everything(seed)if config.save_memory:model.low_vram_shift(is_diffusing=False)cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}shape = (4, H // 8, W // 8)if config.save_memory:model.low_vram_shift(is_diffusing=True)model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)# Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,shape, cond, verbose=False, eta=eta,unconditional_guidance_scale=scale,unconditional_conditioning=un_cond)if config.save_memory:model.low_vram_shift(is_diffusing=False)x_samples = model.decode_first_stage(samples)x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)results = [x_samples[i] for i in range(num_samples)]return [detected_map] + resultsif __name__=='__main__':video_capture = cv2.VideoCapture(sys.argv[1])fps = int(video_capture.get(cv2.CAP_PROP_FPS))frame_size = (int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH)),int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))count = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)output_video = Noneinit = Falsewhile True:ret, frame = video_capture.read()if not ret:breakoimage = process(input_image=np.uint8(frame), prompt="photorealistic,long_hair,realistic,solo,long_hair,(photorealistic:1.4),best quality,ultra high res,teeth,Long sleeve,""Blue dress,full body,big breasts, 3girls,Grin,graffiti (medium),ok sign,sexy,""smile,stand,1girl,full body,beautiful,masterpiece,best quality,extremely detailed face,perfect lighting,1girl,solo""best quality,ultra high res,(photorealistic:1.4),parted lipslipstick,ultra detailed,Peach buttock,looking at viewer,masterpiece,best quality")print(oimage[1].shape)if init is False:output_video = cv2.VideoWriter("output_video.mp4", cv2.VideoWriter_fourcc(*'mp4v'), fps, (oimage[1].shape[1], oimage[1].shape[0]))init = Trueoutput_video.write(oimage[1])print("==> frame:%d count:%d" % (video_capture.get(cv2.CAP_PROP_POS_FRAMES), count))if video_capture.get(cv2.CAP_PROP_POS_FRAMES) == 100:break;video_capture.release()output_video.release()cv2.destroyAllWindows()
- 运行
python ovc_openpose.py exp.mp4
用到的相关模型地址
Annotators
StableDiffusion
ControlNet
相关文章:
使用ControlNet生成视频(Pose2Pose)
目录 ControlNet 介绍 ControlNet 14种模型分别是用来做什么的 ControlNet 运行环境搭建 用到的相关模型地址 ControlNet 介绍 ControlNet 是一种用于控制扩散模型的神经网络结构,可以通过添加额外的条件来实现对图像生成的控制。它通过将神经网络块的权重复制到…...
基于Docker使用Minikube
1. 查看并操控Minikube状态信息 Minikube相当于docker中的一个container,可以在Docker Desktop中看到并操控Minikube container的相关状态: 通过以下命令查看当前docker中的container: % docker ps CONTAINER ID IMAGE …...
Stable Diffusion系列(一):古早显卡上最新版 WebUI 安装及简单操作
文章目录 Stable Diffusion安装AnimateDiff插件适配sdxl模型适配 Stable Diffusion使用插件安装界面设置基础文生图加入lora的文生图 Stable Diffusion安装 我的情况比较特殊,显卡版本太老,最高也就支持cuda10.2,因此只能安装pytorch1.12.1&…...
ruoyi框架前端vue部署生产环境教程
前端有子目录,后端有项目名称,请看第3种 第1种 前端nginx没有子目录,后端也没有访问的项目名。这种是最简单的。 vue.config.js 只需要修改target中的IP和端口,就是后端访问的IP和端口 # vue.config.js devServer: {host: 0.…...
leetcode第369周赛
2917. 找出数组中的 K-or 值 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。 nums 中的 K-or 是一个满足以下条件的非负整数: 只有在 nums 中,至少存在 k 个元素的第 i 位值为 1 ,那么 K-or 中的第 i 位的值才是 1 。 返回 nums …...
如何在维格云中自动新增一行或多行数据?
简介 在日常使用维格云中,通常会出现一张表中有数据发生变化时,需要另一张表同时新增一些数据,比如: 项目管理中,每新增一个项目,都要在任务表中产生若干个固定的任务;或一个任务要自动生成若干子任务当一笔订单状态变为成交后,可能要在客户成功表中新增一行记录;帮…...
Three.js 开发引擎的特点
Three.js 是一个流行的开源 3D 游戏和图形引擎,用于在 Web 浏览器中创建高质量的三维图形和互动内容。以下是 Three.js 的主要特点和适用场合,希望对大家有所帮助。北京木奇移动技术有限公司,专业的软件外包开发公司,欢迎交流合作…...
k8s声明式资源管理方式
Kubernetes 支持 YAML 和 JSON 格式管理资源对象 JSON 格式:主要用于 api 接口之间消息的传递 YAML 格式:用于配置和管理,YAML 是一种简洁的非标记性语言,内容格式人性化,较易读 YAML 语法格式: ●大小写…...
unity性能优化__Statistic状态分析
在Unity的Game视图右上角,我们会看到有Stats选项,点击会出现这样的信息 我使用的Unity版本是2019.4.16 一、Audio,顾名思义是声音信息 1:Level:-74.8dB 声音的相对强度或音量。通常,音量级别以分贝(dB&a…...
Linux Spug自动化运维平台公网远程访问
文章目录 前言1. Docker安装Spug2 . 本地访问测试3. Linux 安装cpolar4. 配置Spug公网访问地址5. 公网远程访问Spug管理界面6. 固定Spug公网地址 前言 Spug 面向中小型企业设计的轻量级无 Agent 的自动化运维平台,整合了主机管理、主机批量执行、主机在线终端、文件…...
3DES算法
简介 本文基于.NET的C#实现3DES算法的加密和解密过程。可以用在加密软件、加密狗等。 代码下载链接:https://download.csdn.net/download/C_gyl/88487942 使用 第一种方法 加密 KeySize:128(16字节),192(24字节&#x…...
手机电池寿命检测
安卓 - 应用商店下载“安兔兔” -accubattery 下载地址 accubattery汉化版下载-Accubattery pro中文免费版(电池检测)下载 v1.5.11 安卓专业版-IT猫扑网...
Vue项目搭建及使用vue-cli创建项目、创建登录页面、与后台进行交互,以及安装和使用axios、qs和vue-axios
目录 1. 搭建项目 1.1 使用vue-cli创建项目 1.2 通过npm安装element-ui 1.3 导入组件 2 创建登录页面 2.1 创建登录组件 2.2 引入css(css.txt) 2.3 配置路由 2.5 运行效果 3. 后台交互 3.1 引入axios 3.2 axios/qs/vue-axios安装与使用 3.2…...
AVL树、红黑树的介绍和实现[C++]
本文主要对AVL树和红黑树的结构和实现方法进行一定的介绍,仅实现部分接口。 目录 一、AVL树 1.AVL树的概念 2.AVL树节点的定义 3.AVL树的插入 4.AVL树的旋转 1. 新节点插入较高左子树的左侧——左左:右单旋 2. 新节点插入较高右子树的右侧——右…...
meta分析的异质性检验指标如何计算?
一、什么是异质性? 广义:描述参与者、干预措施和一系列研究间测量结果的差异和多样性,或那些研究中内在真实性的变异。 狭义:统计学异质性,用来描述一系列研究中效应量的变异程度,也用于表明除仅可预见的…...
如何在mac 安装 cocos 的 android环境
基本概念: Java: Java 是一种编程语言,由Sun Microsystems(现在是 Oracle Corporation)开发。Java 是一种跨平台的语言,可以用于开发各种应用程序,包括 Android 应用程序。Android 应用程序的核心代码通常用…...
作为网工有必要了解一下什么是SRv6?
什么是SRv6? 【微|信|公|众|号:厦门微思网络】 【微思网络http://www.xmws.cn,成立于2002年,专业培训21年,思科、华为、红帽、ORACLE、VMware等厂商认证及考试,以及其他认证PMP、CISP、ITIL等】 SRv6&…...
Jmeter(十八):硬件性能监控指标详解
硬件性能监控指标 一、性能监控初步介绍 性能测试的主要目标 1.在当前的服务器配置情况,最大的用户数 2.平均响应时间ART,找出时间较长的业务 3.每秒事务数TPS,服务器的处理能力 性能测试涉及的内容 1.客户端性能测试:web前…...
【ARM Trace32(劳特巴赫) 使用介绍 2 -- Trace32 cmm 脚本基本语法及常用命令】
文章目录 Trace32 CMM 概述1.1 Trace32 系统命令 SYStem1.1.1 Trace32 SYStem.CONFIG1.1.2 SYStem.MemAccess1.1.3 SYStem.Mode1.1.3.1 TRST-Resets the JTAG TAP controller and the CPU internal debug logic1.1.3.2 SRST- Resets the CPU core and peripherals 1.2 Trace32 …...
2023年第七期丨全国高校大数据与人工智能师资研修班
全国高校大数据与人工智能 师资研修班邀请函 2023年第七期 线下班(昆明): 数据采集与机器学习实战 线上班(七大专题): PyTorch深度学习与大模型应用实战 数据采集与处理实战 大数据分析与机器学习实战 大数据技…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
宇树科技,改名了!
提到国内具身智能和机器人领域的代表企业,那宇树科技(Unitree)必须名列其榜。 最近,宇树科技的一项新变动消息在业界引发了不少关注和讨论,即: 宇树向其合作伙伴发布了一封公司名称变更函称,因…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
