当前位置: 首页 > news >正文

[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线

在之前的文章中用 Python 直接计算的 MA 均线,但面对 EMA 我认怂了。
Python+TDengine从零开始搭建量化分析平台-MA均线的多种实现方式

高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数,便捷又省事。
并且用 Pandas 直接对之前 MA 均线进行改写。

我一直同意:I would rather be vaguely right than precisely wrong.

EMA 公式:

EMA(t)=平滑常数*当前价格+(1-平滑常数)*EMA(t-1)

目录

    • 1. 获取数据
    • 2.计算均线
    • 3. 绘制图形
    • 题外话
      • 1. 均线的周期
      • 2. 均线的使用

1. 获取数据

还是使用 Restful 方式从 TDengine 查询数据,并转换成 DataFrame 格式。想看获取数据完整代码的同学,可以翻我之前的笔记。

##SQL
st = '2022-08-01'
et = '2022-10-01'
sql = 'select last(tdate),last(close) from trade_data_a.tdata where fcode="000001" and tdate>="'+st+'" and tdate<="'+et+'"' +' interval(1d) '## 通过Restful 从 TDengine 获取交易数据
def request_post(url, sql, user, pwd):try:sql = sql.encode("utf-8")headers = {'Connection': 'keep-alive','Accept-Encoding': 'gzip, deflate, br'}result = requests.post(url, data=sql, auth=HTTPBasicAuth(user,pwd),headers=headers)text=result.content.decode()return textexcept Exception as e:print(e)## 判断查询是否成功
def check_return(result):datart = json.loads(result).get("code")if  str(datart) == '0':chkrt = 'succ'else:chkrt = 'error' return chkrt## 将返回的 Json 转换为 DataFrame
def request_get_d(resInfo):load_data = json.loads(resInfo)data = load_data.get("data")df = pd.DataFrame(data)df.rename(columns={0:'tdate',1:'close'},inplace=True)return df

2.计算均线

不得不说,用别人的轮子就是方便。

if __name__ == '__main__':rt = request_post(tdurl,sql,username,password)scode = check_return(rt)if scode != 'error':df = request_get_d(rt)ema5 = pd.DataFrame.ewm(df['close'],span=5).mean() ema10 = pd.DataFrame.ewm(df['close'],span=10).mean() 

3. 绘制图形

        plt.title("EMA")plt.plot(ema5,'g',linewidth=1.0,label='EMA5')plt.plot(ema10,'r',linewidth=1.0,label='EMA10')plt.legend()plt.grid()plt.show()

看起来比上次计算 MA 均线简单多了,毕竟是站在别人的肩膀上嘛。
在这里插入图片描述

题外话

历史数据的均线基本不会变化,计算好以后可以直接写到 TDengine 里面,然后在 Grafana 中展示。

这部分的实现放在下个笔记。

1. 均线的周期

绘制均线必须要指定周期,通常使用的周期为5、10、20,为什么呢??

因为通常一周的交易日是5天,其他为5的倍数,那么这个周期是否能够准确趋势的变化呢?

有句话说的很好,技术分析总是在不断的自我验证中走向灭亡。

因此均线周期的选择并非一成不变的,通过修改周期,可能会获得不同的视角。

2. 均线的使用

仔细观察就会发现:均线相较于实际数据数据是滞后的,周期越长滞后越严重。MA 均线比 EMA 均线更加滞后,因为 EMA中 最近的数据具有较大的权重。

因此,均线只是对历史价格趋势的描述,而非预测。这点非常重要。也就是说,均线是用来确认趋势,对价格走势进行验证的。

相关文章:

[量化投资-学习笔记004]Python+TDengine从零开始搭建量化分析平台-EMA均线

在之前的文章中用 Python 直接计算的 MA 均线&#xff0c;但面对 EMA 我认怂了。 PythonTDengine从零开始搭建量化分析平台-MA均线的多种实现方式 高数是我们在大学唯一挂过的科。这次直接使用 Pandas 库的 DataFrame.ewm 函数&#xff0c;便捷又省事。 并且用 Pandas 直接对之…...

KaiwuDB 获山东省工信厅“信息化应用创新优秀解决方案”奖

10月23日&#xff0c;山东省工信厅正式公示《2023年山东省信息化应用创新典型应用案例及优秀解决方案名单》&#xff0c;面向全省、全国重点推荐山东省技术水平先进、应用示范效果突出、产业带动性强的信息化解决方案及应用实践&#xff0c;对于进一步激发山东省信息技术产业创…...

Python-常用的量化交易代码片段

算法交易正在彻底改变金融世界。通过基于预定义标准的自动化交易,交易者可以以闪电般的速度和比以往更精确的方式执行订单。如果您热衷于深入了解算法交易的世界,本指南提供了帮助您入门的基本代码片段。从获取股票数据到回溯测试策略,我们都能满足您的需求! 1. 使用 YFina…...

Netty优化-rpc

Netty优化-rpc 1.3 RPC 框架1&#xff09;准备工作 1.3 RPC 框架 1&#xff09;准备工作 这些代码可以认为是现成的&#xff0c;无需从头编写练习 为了简化起见&#xff0c;在原来聊天项目的基础上新增 Rpc 请求和响应消息 Data public abstract class Message implements …...

【Docker 内核详解】cgroups 资源限制(一):概念、作用、术语

cgroups 资源限制&#xff08;一&#xff09;&#xff1a;概念、作用、术语 1.cgroups 是什么2.cgroups 的作用3.cgroups 术语表 当谈论 Docker 时&#xff0c;常常会聊到 Docker 的实现方式。很多开发者都知道&#xff0c;Docker 容器本质上是宿主机上的进程&#xff08;容器所…...

MATLAB——一维小波的多层分解

%% 学习目标&#xff1a;一维小波的多层分解 clear all; close all; load noissin.mat; xnoissin; [C,L]wavedec(x,3,db4); % 3层分解&#xff0c;使用db4小波 [cd1,cd2,cd3]detcoef(C,L,[1,2,3]); % 使用detcoef函数获取细节系数 ca3appcoef(C,L,db4,3); …...

C++的拷贝构造函数

目录 拷贝构造函数一、为什么用拷贝构造二、拷贝构造函数1、概念2、特征1. 拷贝构造函数是构造函数的一个重载形式。2. 拷贝构造函数的参数3. 若未显式定义&#xff0c;编译器会生成默认的拷贝构造函数。4. 拷贝构造函数典型调用场景 拷贝构造函数 一、为什么用拷贝构造 日期…...

【手机端远程连接服务器】安装和配置cpolar+JuiceSSH:实现手机端远程连接服务器

文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …...

Jupyter Notebook的使用

文章目录 Jupyter Notebook一、Jupyter Notebook是什么&#xff1f;二、使用步骤1.安装Miniconda2.安装启动**Jupyter Notebook**3.一些问题 三、Jupyter Notebook的操作1.更换解释器2.在指定的文件夹中打开3 运行的快捷键 四.报错解决1.画图的时候出现报错2.画图的时候空白3.p…...

vue 使用vue-office预览word、excel,pdf同理

在此&#xff0c;我只使用了docx和excel&#xff0c; pdf我直接使用的iframe进行的展示就不作赘述了 //docx文档预览组件 npm install vue-office/docx//excel文档预览组件 npm install vue-office/excel//pdf文档预览组件 npm install vue-office/pdf如果是vue2.6版本或以下还…...

【Spring Boot 源码学习】RedisAutoConfiguration 详解

Spring Boot 源码学习系列 RedisAutoConfiguration 详解 引言往期内容主要内容1. Spring Data Redis2. RedisAutoConfiguration2.1 加载自动配置组件2.2 过滤自动配置组件2.2.1 涉及注解2.2.2 redisTemplate 方法2.2.3 stringRedisTemplate 方法 总结 引言 上篇博文&#xff0…...

Linux中如何进行粘贴复制

因为CTRLC在Linux中具有特定的含义:终止当前操作 xshell提供了CTRLinsert(复制)/shiftinsert(粘贴) 上述快捷键在Windows中依旧支持,...

多输入多输出 | Matlab实现k-means-LSTM(k均值聚类结合长短期记忆神经网络)多输入多输出组合预测

多输入多输出 | Matlab实现k-means-LSTM&#xff08;k均值聚类结合长短期记忆神经网络&#xff09;多输入多输出组合预测 目录 多输入多输出 | Matlab实现k-means-LSTM&#xff08;k均值聚类结合长短期记忆神经网络&#xff09;多输入多输出组合预测预测效果基本描述程序设计参…...

学习笔记3——JVM基础知识

学习笔记系列开头惯例发布一些寻亲消息 链接&#xff1a;https://baobeihuijia.com/bbhj/contents/3/196593.html JVM&#xff08;Write Once&#xff0c;Run Anywhere&#xff09; 以下是一些学习时有用到的资料&#xff0c;只学习了JVM的基础知识&#xff0c;对JVM整体进…...

图像处理:图片二值化学习,以及代码中如何实现

目录 1、了解下图片二值化的含义 2、进行图像二值化处理的方法 3、如何选择合适的阈值进行二值化 4、实现图片二值化&#xff08;代码&#xff09; &#xff08;1&#xff09;是使用C和OpenCV库实现&#xff1a; &#xff08;2&#xff09;纯C代码实现&#xff0c;不要借…...

如果你点击RabbitMQ Service - start了,但http://localhost:15672/#/还是访问不了,那么请看这篇博客!

RabbitMQ 服务启动失败问题小结&#xff08;Windows环境&#xff09;_rabbitmq启动不了-CSDN博客...

Shell 脚本学习 day01

release node v1 初始版本 #定义备份目录#当前时间#检查备份目录是否存在&#xff0c;不存在需要创建# 查找并备份 .xxx 文件# 提取文件名&#xff08;不包含路径部分&#xff09;# 构建备份文件名# 将查出来的.xxx文件拷贝到备份目录#!/bin/bash # context 备份根目录下所有.…...

esp32 rust linux

官方文档&#xff1a;https://esp-rs.github.io/book/introduction.html 安装 rust curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh 工具 risc&#xff1a; rustup toolchain install nightly --component rust-src # nightly 支持 riscv或使用安装工具同时…...

一文了解Elasticsearch

数据分类 数据按数据结构分类主要有三种&#xff1a;结构化数据、半结构化数据和非结构化数据。 结构化数据 结构化数据具有明确定义数据模型和格式的数据类型。 特点&#xff1a; 数据具有固定的结构和模式。 数据项明确定义数据类型和长度。 适合用于数据查询、过滤和分…...

一篇文章认识【性能测试】

一、 性能测试术语解释 1. 响应时间 响应时间即从应用系统发出请求开始&#xff0c;到客户端接收到最后一个字节数据为止所消耗的时间。响应时间按软件的特点再可以细分&#xff0c;如对于一个 C/S 软件的响应时间可以细分为网络传输时间、应用服务器处理时间、数据库服务器…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接&#xff1a;3403. 从盒子中找出字典序最大的字符串 I 代码如下&#xff1a; class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...