LoRaWan之LoRaMAC 的快速入门指南
概述
本快速入门指南简要介绍了 LoRaMAC 层的重要操作。示例部分提供了不同设备类别的完整示例。
初始化
LoRaMAC层的初始化函数是LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks, LoRaMacRegion_t region )。该函数具有三个参数:LoRaMacPrimitives_t、LoRaMacCallback_t和LoRaMacRegion_t。LoRaMAC 层使用原语和回调,这些必须由上层提供。数据结构LoRaMacPrimitives_t包含指向确认和指示原语的函数指针。LoRaMAC层将调用原语向上层提供操作状态信息。数据结构LoRaMacCallback_t包含指向为 LoRaMAC 层提供信息的过程的函数指针。例如设备的电池电量。数据类型LoRaMacRegion_t指定 LoRaMAC 层应在哪个区域上操作。
以下代码片段提供了初始化示例:
static void McpsConfirm( McpsConfirm_t *mcpsConfirm )
{// Implementation of the MCPS-Confirm primitive
}static void McpsIndicatio相关文章:
LoRaWan之LoRaMAC 的快速入门指南
概述 本快速入门指南简要介绍了 LoRaMAC 层的重要操作。示例部分提供了不同设备类别的完整示例。 初始化 LoRaMAC层的初始化函数是LoRaMacInitialization( LoRaMacPrimitives_t *primitives, LoRaMacCallback_t *callbacks, LoRaMacRegion_t region )。该函数具有三个参数:L…...
中国教育企业出海 新兴技术助力抢占先机
继游戏、电商、短视频等领域轮番出海之后,国内教育企业纷纷开启了出海之路。近日发布的《2023年教育应用出海市场洞察》报告显示,在中国教育企业出海市场中,语言学习是最主要的赛道,但赛道竞争更为激烈。 报告指出,全…...
IntelliJ IDEA2023旗舰版和社区版下载安装教程(图解)
🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 &a…...
【RxJava】map过程中各个Observable生命周期分析
map和flatMap的区别 首先说下map和flatMap的区别,防止有对RxJava还不够熟悉的小伙伴 map的Function指定如何将A转为BflatMap的Function则指定如何将Observable<A>转为Observable<B>map和flatMap最终的转换结果都是Observable<B>flatMap由于可以…...
vue 获取上一周和获取下一周的日期时间
效果图: 代码 <template><div><div style"padding: 20px 0;"><div style"margin-left: 10px; border-left: 5px solid #0079fe; font-size: 22px; font-weight: 600; padding-left: 10px">工作计划</div><di…...
线性代数 第四章 线性方程组
一、矩阵形式 经过初等行变换化为阶梯形矩阵。当,有解;当,有非零解。 有解,等价于 可由线性表示 克拉默法则:非齐次线性方程组中,系数行列式,则方程组有唯一解,且唯一解为 其中是…...
@DateTimeFormat和@JsonFormat注解
在日常开发中,有用到时间类型作为查询参数或者查询结果有时间参数的一般都会见过这两个注解。 DateTimeFormat(pattern “yyyy-MM-dd HH:mm:ss”)注解用于解析请求接口入参。将入参的字符串按照pattern设置的格式来转换成日期时间对象。 JsonFormat(timezone “G…...
做抖音短视频会经历哪些阶段?
今天来聊聊那些在抖音做大的老板,从开始到后期经历的四个阶段,以及每个阶段的工作重心 1、0—1的阶段 0—1的起步阶段是整个阶段最有难度的一环,很多人对0到1的认知是有错误的,以为爆过几条视频就已经进阶了 想要实现0-1的突破…...
【Mquant】2、量化平台的选择
文章目录 一、选择因素二、常见的量化平台三、为什么选择VeighNa?四、参考 一、选择因素 功能和工具集:量化平台应该提供丰富的功能和工具集,包括数据分析、策略回测、实时交易等。不同的平台可能有不同的特点和优势,可以根据自己…...
iPhone手机如何恢复删除的视频?整理了3个好用方法!
在日常生活中,我们会把各种各样的视频存放在手机里。这些视频记录着我们生活中的点点滴滴,每一帧都承载着珍贵的记忆。但如果我们不小心将这些重要视频删除了该怎么办?如何恢复删除的视频?本文将以iPhone手机为例子,教…...
全网最全的RDMA拥塞控制入门基础教程
RDMA-CC(全网最全的RDMA拥塞控制入门基础教程) 文章目录 RDMA-CC(全网最全的RDMA拥塞控制入门基础教程)DMARDMARDMA举例RDMA优势RDMA的硬件实现方法RDMA基本术语FabricCA(Channel Adapter)Verbs 核心概念Me…...
分布式消息队列:RabbitMQ(1)
目录 一:中间件 二:分布式消息队列 2.1:是消息队列 2.1.1:消息队列的优势 2.1.1.1:异步处理化 2.1.1.2:削峰填谷 2.2:分布式消息队列 2.2.1:分布式消息队列的优势 2.2.1.1:数据的持久化 2.2.1.2:可扩展性 2.2.1.3:应用解耦 2.2.1.4:发送订阅 2.2.2:分布式消息队列…...
Redis集群脑裂
1. 概述 Redis 集群脑裂(Cluster Split Brain)是指在 Redis 集群中,由于网络分区或通信问题,导致集群中的节点无法相互通信,最终导致集群内部发生分裂,出现多个子集群,每个子集群认为自己是有效…...
GEE教程——随机样本点添加经纬度信息
简介: 有没有办法在绘制散点图后将样本的坐标信息(纬度/经度)添加到.CSV表格数据中? 这里我们很多时候我们需要加载样本点的基本信息作为属性,本教程主要的目的就是我们选取一个研究区,然后产生随机样本点,然后利用坐标函数,进行样本点的获取经纬度,然后通过循环注意…...
PyTorch入门学习(十):神经网络-非线性激活
目录 一、简介 二、常见的非线性激活函数 三、实现非线性激活函数 四、示例:应用非线性激活函数 一、简介 在神经网络中,激活函数的主要目的是引入非线性特性,从而使网络能够对非线性数据建模。如果只使用线性变换,那么整个神…...
《golang设计模式》第三部分·行为型模式-03-解释器模式(Interpreter)
文章目录 1. 概述1.1 角色1.2 类图1.3 优缺点 2. 代码示例2.1 设计2.2 代码2.3 类图 1. 概述 解释器模式(Interpreter)是用于表达语言语法树和封装语句解释(或运算)行为的对象。 1.1 角色 AbstractExpression(抽象表…...
Windows个性化颜色睡眠后经常改变
问题再现 我把系统颜色换成了一种红色,结果每次再打开电脑又变回去了(绿色); 原因是因为wallpaper engine在捣蛋 需要禁用修改windows配色这一块选项; 完事!原来是wallpaper engine的问题;...
calico ipam使用
calico ipam使用 前面的文章pod获取ip地址的过程中提到过calico使用的IP地址的管理模块是其自己开发的模块calico-ipam,本篇文章来讲述下其具体用法。 一、环境信息 版本信息 本环境使用版本是k8s 1.25.3 [rootnode1 ~]# kubectl get node NAME STATUS ROLES …...
Redis系统学习(高级篇)-Redis持久化-AOF方式
目录 一、是什么AOF? 二、AOF如何开启 以及触发策略有哪些 三、AOF文件重写 四、AOF与RDB对比 一、是什么AOF? 就是通过每次记录写操作,最终通过来依次这些命令来达到恢复数据的目的 二、AOF如何开启 以及触发策略有哪些 save "&q…...
云安全-云原生基于容器漏洞的逃逸自动化手法(CDK check)
0x00 docker逃逸的方法种类 1、不安全的配置: 容器危险挂载(挂载procfs,Scoket) 特权模式启动的提权(privileged) 2、docker容器自身的漏洞 3、linux系统内核漏洞 这里参考Twiki的云安全博客,下…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
