多机多卡分布式训练
1. 环境搭建
- 分布式训练框架:accelerate+deepspeed+pdsh(可有可无)
- 基础环境:cuda、显卡驱动、pytorch
1.1 安装相关包
- cuda安装:参考官网安装步骤
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-rhel7-11-8-local-11.8.0_520.61.05-1.x86_64.rpm
sudo rpm -i cuda-repo-rhel7-11-8-local-11.8.0_520.61.05-1.x86_64.rpm
sudo yum clean all
sudo yum -y install nvidia-driver-latest-dkms
sudo yum -y install cuda
- 显卡驱动安装:下载官网驱动包并安装
- pytorch安装:参考官网安装指令
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
- accelerate安装:参考huggingface官网
pip install accelerate
- deepspeed安装:参考deepspeed github
- pdsh安装:官网说明
可以参考教程:并行分布式运维工具pdsh-阿里云开发者社区
tar jxvf pdsh-2.29.tar.bz2
cd pdsh-2.29
./configure --with-ssh --with-rsh --with-mrsh --with-dshgroups --with-machines=/etc/pdsh/machines
make
make install
pdsh -V
注意:所有机器均需要安装一模一样的环境:版本需要一致;conda安装路径一致;同时cuda和pytorch版本相对应,如下图所示。

2. 启动分布式训练
2.1 使用accelerate
# 1、生成accelerate配置文件,使用命令行生成
accelerate config
2.1 启动分布式训练脚本
方式一:使用pdsh,仅需要在主节点启动
# accelerate语法
accelerate launch --config_file <accelerate配置文件> python_script.py <python脚本环境变量参数># 示例如下
config_path=/data0/sdmt/mxm/kohya_ss/my_util/config/deepspeed_pdsh_config.yamlaccelerate launch --config_file $config_path \
train_text_to_image_sdxl.py --mixed_precision fp16 --enable_xformers_memory_efficient_attention --gradient_checkpointing --noise_offset 0.05 --cache_dir "/data0/sdmt/mxm/datasets/" --num_train_epochs 20 --resolution 1024 --proportion_empty_prompts 0.2 --learning_rate 1e-06 --lr_scheduler "constant" --lr_warmup_steps 0 --validation_prompt "a pair of casual leather shoes" --validation_epochs 5 --pretrained_model_name_or_path "stabilityai/stable-diffusion-xl-base-1.0" --pretrained_vae_model_name_or_path "madebyollin/sdxl-vae-fp16-fix" --train_data_dir "/data0/sdmt/train_img/000/10_train_1024_hug"
如下所示,启动2台服务器,服务器每台一张显卡。

相关文章:
多机多卡分布式训练
1. 环境搭建 分布式训练框架:acceleratedeepspeedpdsh(可有可无)基础环境:cuda、显卡驱动、pytorch 1.1 安装相关包 cuda安装:参考官网安装步骤 wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-…...
打字练习软件 Type Fu mac中文版技能介绍
Type Fu mac是一款打字练习和提高打字速度的应用程序。它旨在帮助用户通过练习键盘打字,提高打字准确性和速度。无论您是初学者还是想要提高打字技能的专业人士,Type Fu都是一个很好的选择! Type Fu mac采用了一种互动,游戏化的方…...
我的云栖大会之旅:见证云计算创新的15年
云栖大会,曾经是一次不可思议的科技之旅,却如今已见证了我对云计算世界的15年关注和发展。第一次踏上云栖大会之旅,我记得是在2009年。那时的云计算还是一个新生事物,而云栖大会正是其中的奠基石。 我清楚地记得那个炎热的夏天&am…...
一个小技巧,显著提升大模型推理能力!加州大学提出MAF多反馈框架
作者 | 谢年年 最近,多篇文章《GPT-4的推理能力非常有限,有两篇论文为证》、《DeepMind:无法自我纠正推理,除非提前得知正确答案》指出大模型在推理任务中似乎没有自我改进的能力。即在无任何外部反馈的情况下无法通过自我纠正的形…...
测开 (Junit 单元测试框架)
目录 了解 Junit 引入相关依赖 1、Junit注解 Test BeforeEach、BeforeAll AfterEach && AfterAll 2、断言 1、Assertions - assertEquals 方法 2、Assertions - assertNotEquals 方法 3、Assertions - assertTrue && assertFalse方法 4、Assertions…...
ncurse编程指南
文章目录 0. 介绍1. Hello, Ncurse2. 初始化函数2.1 raw() 和 cbreak()2.2 echo()和noecho()2.3 keypad()2.4 halfdelay()2.5 初始化样例 3. 命名规范4. 输出函数4.1 addch()类函数4.2 printw()类函数4.3 addstr()类函数4.4 注意4.5 输出函数例子 5. 输入函数5.1 getch()5.2 sc…...
Graph U-Net Code【图分类】
1. main.py # GNet是需要用到的model net GNet(G_data.feat_dim, G_data.num_class, args) # graph, 特征维度,类别数,参数 trainer Trainer(args, net, G_data) #开始训练数据 # 正式开始训练数据 trainer.train()2. network.py class GNet(nn.Modul…...
PTA 秀恩爱分得快(树)
题目 古人云:秀恩爱,分得快。 互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度。如果一张照片上出现了 K 个人,这些人两两间的亲密度就被定义为 1/K。任意两个人如果同时出现在…...
文心一言4.0对比ChatGPT4.0有什么优势?
目录 总结 文心一言4.0的优势 文心一言4.0的劣势 免费分享使用工具 后话 生成式AI的困境 “不会问”“不会用”“不敢信” 为什么要出收费版本? 目前使用过国内的文心一言3.5和WPS AI,国外的ChatGPT4.0。 文心一言和其他国内产品相比࿰…...
美观且可以很方便自定义的MATLAB绘图颜色
函数介绍 主函数是draw_test,用于测试函数。 draw_h是函数,用于给Matlab提供美观且可以很方便自定义的绘图颜色。 draw_h函数介绍 这是一个带输入输出的函数,输入1/2/3,输出下面三种颜色库的配色,每种库均有五种颜色…...
基于jsp,ssm物流快递管理系统
开发工具:eclipse,jdk1.8 服务器:tomcat7.0 数据库:mysql5.7 技术: springspringMVCmybaitsEasyUI 项目包括用户前台和管理后台两部分,功能介绍如下: 一、用户(前台)功能: 用…...
陪诊系统|挂号陪护搭建二开陪诊师入驻就医小程序
我们的陪诊小程序拥有丰富多样的功能,旨在最大程度满足现代人的需求。首先,我们采用了智能排队系统,通过扫描二维码获取排号信息,让您从繁琐的排队过程中解放出来。其次,我们提供了多种支付方式,不仅可以实…...
恒驰服务 | 华为云数据使能专家服务offering之大数据建设
恒驰大数据服务主要针对客户在进行智能数据迁移的过程中,存在业务停机、数据丢失、迁移周期紧张、运维成本高等问题,通过为客户提供迁移调研、方案设计、迁移实施、迁移验收等服务内容,支撑客户实现快速稳定上云,有效降低时间成本…...
轻量级狂雨小说cms系统源码 v1.5.2 基于ThinkPHP5.1+MySQL
轻量级狂雨小说cms系统源码 v1.5.2 基于ThinkPHP5.1MySQL的技术开发 狂雨小说cms提供一个轻量级小说网站解决方案,基于ThinkPHP5.1MySQL的技术开发。 KYXSCMS,灵活,方便,人性化设计简单易用是最大的特色,是快速架设小说类网站首选…...
Leetcode刷题详解——Pow(x, n)
1. 题目链接:50. Pow(x, n) 2. 题目描述: 实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。 示例 1: 输入:x 2.00000, n 10 输出:1024.00000示例 2:…...
计算机毕业设计选题推荐-校园失物招领微信小程序/安卓APP-项目实战
✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...
人工智能基础_机器学习011_梯度下降概念_梯度下降步骤_函数与导函数求解最优解---人工智能工作笔记0051
然后我们来看一下梯度下降,这里先看一个叫 无约束最优化问题,,值得是从一个问题的所有可能的备选方案中选最优的方案, 我们的知道,我们的正态分布这里,正规的一个正态分布,还有我们的正规方程,他的这个x,是正规的,比如上面画的这个曲线,他的这个x,就是大于0的对吧,而现实生活…...
开放式耳机能保护听力吗,开放式耳机跟骨传导耳机哪个更好?
如果从严格意义上来讲的话,开放式耳机中的骨传导耳机是能保护听力,现如今的开放式耳机是一个统称,将所有不入耳的类目全部规划到一块。因此在开放式耳机中存在着一些耳机是只能够保持周边环境音,而不是保护听力的。 下面让我来给…...
【Qt之QLocale】使用
描述 QLocale类可以在多种语言之间进行数字和字符串的转换。 QLocale类在构造函数中使用语言/国家对进行初始化,并提供类似于QString中的数字转字符串和字符串转数字的转换函数。 示例: QLocale egyptian(QLocale::Arabic, QLocale::Egypt);QString s1 …...
维修服务预约小程序的效果如何
生活服务中维修项目绝对是需求量很高的,如常见的保洁、管道疏通、数码维修、安装、便民服务等,可以说每天都有生意,而对相关维修店企业来说,如何获得更多生意很重要。 接下来让我们看看通过【雨科】平台制作维修服务预约小程序能…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
