当前位置: 首页 > news >正文

天气预测demo

天气预测

  • 1 数据集介绍
    • 1.1 训练集
    • 1.2 测试集
  • 2 导入数据进行数据分析
    • 2.1 浏览数据
    • 2.2 探索数据
      • 2.2.1 查看数据类型

1 数据集介绍

1.1 训练集

训练集中共有116369个样本,每个样本有23个特征,特征具体介绍如下:

列名解释
Date:日期;
Location:地点;
MinTemp:最小温度;
MaxTemp:最大温度;
Rainfall:降雨量;
Evaporation:蒸发量;
Sunshine:一天中阳光明媚的小时数;
WindGustDir:最强阵风方向;
WindGustSpeed:最强阵风风速;
WindDir9am:上午9点风向;
WindDir3pm:下午3点风向;
WindSpeed9am:上午9点风速;
WindSpeed3pm:下午3点风速;
Humidity9am:上午9点湿度;
Humidity3pm:下午3点湿度;
Pressure9am:上午9点压强;
Pressure3pm:下午3点压强;
Cloud9am:上午9点云层遮盖了天空的比例;
Cloud3pm:下午3点云层遮盖了天空的比例;
Temp9am:上午9点温度;
Temp3pm:下午3点温度;
RainToday:今天是否下雨;
RainTomorr:明天是否下雨。

1.2 测试集

测试集中共有29093个样本,每个样本有22个特征,没有训练集中的RainTomorrow这一项特征。

列名解释
Date:日期;
Location:地点;
MinTemp:最小温度;
MaxTemp:最大温度;
Rainfall:降雨量;
Evaporation:蒸发量;
Sunshine:一天中阳光明媚的小时数;
WindGustDir:最强阵风方向;
WindGustSpeed:最强阵风风速;
WindDir9am:上午9点风向;
WindDir3pm:下午3点风向;
WindSpeed9am:上午9点风速;
WindSpeed3pm:下午3点风速;
Humidity9am:上午9点湿度;
Humidity3pm:下午3点湿度;
Pressure9am:上午9点压强;
Pressure3pm:下午3点压强;
Cloud9am:上午9点云层遮盖了天空的比例;
Cloud3pm:下午3点云层遮盖了天空的比例;
Temp9am:上午9点温度;
Temp3pm:下午3点温度;
RainToday:今天是否下雨;

2 导入数据进行数据分析

2.1 浏览数据

#%%import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split# 导入数据
weather = pd.read_csv(r"./work/train.csv",index_col=False)# 观察前五行数据
print(weather.head(5))
      Date   Location  MinTemp  MaxTemp  Rainfall  Evaporation  Sunshine  \
0  2012-03-07   Dartmoor     10.1     24.6       1.2          2.6      11.3   
1  2014-12-21  Newcastle     17.0     28.7       0.0          NaN       NaN   
2  2011-01-14     Albany     17.9     20.8       0.1          9.6      12.1   
3  2011-10-19   Ballarat      8.9     25.5       0.0          NaN       NaN   
4  2013-11-04      Uluru     21.3     38.3       0.0          NaN       NaN   WindGustDir  WindGustSpeed WindDir9am      ...      Humidity9am  \
0         ESE           54.0         SE      ...             86.0   
1         NaN            NaN         NE      ...             63.0   
2         NaN            NaN         NE      ...             61.0   
3         NNE           54.0          N      ...             56.0   
4         ENE           57.0          E      ...             15.0   Humidity3pm  Pressure9am  Pressure3pm  Cloud9am  Cloud3pm  Temp9am  \
0         41.0       1028.6       1025.7       NaN       NaN     13.9   
1         58.0          NaN          NaN       1.0       1.0     24.0   
2         67.0       1005.1       1007.6       5.0       4.0     19.8   
3         44.0       1027.1       1022.9       0.0       NaN     16.7   
4          9.0       1018.4       1013.9       NaN       NaN     28.8   Temp3pm  RainToday  RainTomorrow  
0     23.0        Yes            No  
1     28.0         No            No  
2     20.0         No            No  
3     25.0         No            No  
4     36.9         No            No  [5 rows x 23 columns]

通过简单的观察数据,我们发现有很多需要我们要作的事情,例如Nan值、字符型变量的处理,这些都是特征工程中的难点。

2.2 探索数据

2.2.1 查看数据类型

#%%
# 查看数据类型
weather.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 116368 entries, 0 to 116367
Data columns (total 23 columns):
Date             116368 non-null object
Location         116368 non-null object
MinTemp          115160 non-null float64
MaxTemp          115354 non-null float64
Rainfall         113762 non-null float64
Evaporation      66053 non-null float64
Sunshine         60402 non-null float64
WindGustDir      108111 non-null object
WindGustSpeed    108158 non-null float64
WindDir9am       107925 non-null object
WindDir3pm       112986 non-null object
WindSpeed9am     114940 non-null float64
WindSpeed3pm     113920 non-null float64
Humidity9am      114227 non-null float64
Humidity3pm      112736 non-null float64
Pressure9am      104345 non-null float64
Pressure3pm      104377 non-null float64
Cloud9am         71571 non-null float64
Cloud3pm         68773 non-null float64
Temp9am          114947 non-null float64
Temp3pm          113466 non-null float64
RainToday        113762 non-null object
RainTomorrow     113776 non-null object
dtypes: float64(16), object(7)
memory usage: 20.4+ MB

相关文章:

天气预测demo

天气预测1 数据集介绍1.1 训练集1.2 测试集2 导入数据进行数据分析2.1 浏览数据2.2 探索数据2.2.1 查看数据类型1 数据集介绍 1.1 训练集 训练集中共有116369个样本&#xff0c;每个样本有23个特征&#xff0c;特征具体介绍如下&#xff1a; 列名解释Date&#xff1a;日期&a…...

HDMI协议介绍(四)--Video

目录 视频格式 RGB444 YUV444 YUV422 YUV420 Color Depth Video控制信号 Pixel Repetition HDMI支持多种视频格式和分辨率。以hdmi1.4和2.0协议来说&#xff0c;视频格式支持RGB444、YUV444、YUV422和YUV420&#xff0c;其中RGB444和YUV444一般都是要求支持的。 视频格式…...

微信授权登录流程以及公众号配置方法(golang后端)

一、准备一个已经认证OK的微信公众号和已经备案的域名&#xff0c;且解析好配置好https证书。 1.如上图 微信公众号 > 基本配置 &#xff0c;设置开发者密码 2.设置IP白名单&#xff0c;白名单填写提供后端服务的服务器公网IP 二、公众号服务器配置。 1.找到基本配置 2.将服…...

【软件测试面试题】大厂头条:如何定位bug?实际案例拿offer还不简单......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 问题&#xff1a; 用…...

kubeconfig生成最高权限的token

参考文档 1.https://kubernetes.io/zh-cn/docs/reference/access-authn-authz/authentication/ 2. https://kubernetes.io/zh-cn/docs/reference/access-authn-authz/rbac/ 操作流程 生成kubernetes集群最高权限admin用户的token admin-role.yaml kind: ClusterRoleBindin…...

Android 9.0 蓝牙去掉传输文件的功能

1.概述 在9.0的系统rom定制化产品开发中,在原生系统中蓝牙这块的功能也是非常重要的,所以在对蓝牙功能开发过程中,对功能的定制要求也多,在蓝牙的开发需求中,功能要求 也是越来越多的,产品需要要求在蓝牙文件传输过程中,进行限制就是不让蓝牙传输文件,所以要求在开始传…...

C语言指针易错点—字符数组与字符指针

C语言指针易错点—字符数组与字符指针字符数组与字符指针的区别字符数组与字符指针的区别举例字符指针必须先赋值&#xff0c;后引用字符数组与字符指针的区别 因为字符数组与字符指针都可以表示字符串&#xff0c;但他们不是等价的。下面就来讲讲他们的区别。 char sa[ ] &…...

Yolov3,v4,v5区别

网络区别就不说了&#xff0c;ipad笔记记录了&#xff0c;这里只说其他的区别1 输入区别1.1 yolov3没什么特别的数据增强方式1.2 yolov4Mosaic数据增强Yolov4中使用的Mosaic是参考2019年底提出的CutMix数据增强的方式&#xff0c;但CutMix只使用了两张图片进行拼接&#xff0c;…...

基于Appium+WinAppDriver+Python的winUI3应用的自动化框架搭建分享(一)环境配置

安装WinAppDriver下载并安装WinAppDriver:来源 https://github.com/Microsoft/WinAppDriver/releases开启电脑的开发者模式设置-隐私和安全性-开发者选项-开发人员模式安装Appium安装Appium Server Gui https://github.com/appium/appium-desktop/releases安装Appium Inspector…...

使用docker安装RocketMQ

文章目录1.创建namesrv服务拉取镜像创建namesrv数据存储路径构建namesrv容器2.创建broker节点创建broker数据存储路径创建配置文件构建broker容器3.创建rockermq-console服务拉取镜像构建rockermq-console容器需要关闭防火墙或者开放namesrv和broker端口关闭防火墙开放指定端口…...

【FPGA仿真】Matlab生成二进制、十六进制的txt数据以及Vivado读取二进制、十六进制数据并将结果以txt格式保存

Matlab 生成二进制、十六进制数据 在使用Vivado软件进行Verilog程序仿真时可能需要对模块输入仿真的数据&#xff0c;因此我们需要一个产生数据的方法&#xff08;二进制或者十六进制的数据&#xff09;&#xff0c;Matlab软件是一个很好的工具&#xff0c;当然你也可以使用VS…...

【第四章 IOC操作bean管理(基于注解方式创建对象,注入属性),完全注解开发】

第四章 IOC操作bean管理&#xff08;基于注解方式创建对象&#xff0c;注入属性&#xff09;&#xff0c;完全注解开发 1.IOC操作bean管理&#xff08;基于注解方式&#xff09; &#xff08;1&#xff09;什么是注解&#xff1a; ①注解是代码特殊标记&#xff0c;格式&#…...

【手把手一起学习】(六) Altium Designer 20 STM32核心板Demo----PCB设计

1 PCB设计 PCB设计是制作STM32核心板的关键步骤&#xff0c;其关系到最终生产厂家制作的电路板能否正常使用&#xff0c;PCB设计包括布局&#xff0c;裁板&#xff0c;布线&#xff0c;覆铜&#xff0c;DRC检查等&#xff0c;其中要求、细节、技巧比较多&#xff0c;以后会更详…...

【蓝桥杯集训·周赛】AcWing 第92场周赛

文章目录第一题 AcWing 4864. 多边形一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第二题 AcWing 4865. 有效类型一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解第三题 AcWing 4866. 最大数量一、题目1、原…...

编程参考 - GCC中的Basic ASM

asm关键字允许你在C代码中嵌入汇编程序指令。GCC提供两种形式的内联asm语句。一种是基本asm语句&#xff0c;是没有操作数的语句&#xff08;见基本asm&#xff09;&#xff0c;而另一种扩展asm语句&#xff08;见扩展asm&#xff09;包括一个或多个操作数。在函数内部混合使用…...

软考中级-操作系统

1 操作系统地位计算机系统由硬件和软件组成&#xff0c;未配置软件的称为裸机&#xff0c;但这会导致效率低下。操作系统是为弥补用户与硬件之间的鸿沟的一种系统软件&#xff0c;汇编、编译、解释、数据库管理系统等系统软件和其他应用软件都在此基础。2 进程管理又称处理机管…...

MYD-Y6ULL开发笔记

MYD-Y6ULL开发 文章目录MYD-Y6ULL开发一、系统移植1. 核板说明2. 文件系统操作二、应用开发1. 应用自启动2. 应用编译3.系统应用4.网络5.系统参数一、系统移植 1. 核板说明 型号 MYIR-Y6UL Y2 V2-256N 256D-50I烧了固件命令 uuu.exe myd-y6ulx-y2-256n256d-core-base.auto2. 文…...

三天吃透Java虚拟机面试八股文

本文已经收录到Github仓库&#xff0c;该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点&#xff0c;欢迎star~ Github地址&#xff1a;https://github.com/…...

Spring Cloud Alibaba全家桶(二)——微服务组件Nacos注册中心

前言 本文为微服务组件Nacos注册中心相关知识&#xff0c;下边将对什么是 Nacos&#xff0c;Nacos注册中心&#xff08;包括&#xff1a;注册中心演变及其设计思想、核心功能&#xff09;&#xff0c;Nacos Server部署&#xff08;包括&#xff1a;单机模式、集群模式&#xff…...

命令执行漏洞 | iwebsec

文章目录1 靶场环境2 命令执行漏洞介绍3 靶场练习01-命令执行漏洞02-命令执行漏洞空格绕过03-命令执行漏洞关键命令绕过04-命令执行漏洞通配符绕过05-命令执行漏洞base64编码绕过4 命令执行漏洞危害01-读写系统文件02-执行系统命令03-种植恶意木马04-反弹shellpython反弹shellp…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...