当前位置: 首页 > news >正文

【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)

👨‍🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
🎉3 文献来源
🌈4 Matlab代码实现

💥1 概述

文献来源:

摘要:在分析灰狼优化算法不足的基础上,提出一种改进的灰狼优化算法(CGWO),该算法采用基于余弦规律变化的收敛因子,平衡算法的全局搜索和局部搜索能力,同时引入基于步长欧氏距离的比例权重更新灰狼位置,从而加快算法的收敛速度。对8个经典测试函数进行仿真实验,结果表明CGWO算法的求解精度更高,稳定性更好。最后以预测谷氨酸菌体生长浓度为例,利用CGWO算法估计Richards模型的参数,以均方根误差和平均绝对误差作为评价指标,与PSO算法、GA算法和VS-FOA算法的结果进行比较,CGWO算法可以有效地估计Richards模型中的参数。

关键词:

灰狼优化算法;收敛因子;Richards模型;参数估计;

📚2 运行结果

部分代码:

function [Alpha_score,Alpha_pos,Convergence_curve]=CGWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

%% 收敛因子参数

aintit = 2;

afinal = 0;

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

for i=1:size(Positions,1)

% Return back the search agents that go beyond the boundaries of the search space

Flag4ub=Positions(i,:)>ub;

Flag4lb=Positions(i,:)<lb;

Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;

% Calculate objective function for each search agent

fitness=fobj(Positions(i,:));

% Update Alpha, Beta, and Delta

if fitness<Alpha_score

Alpha_score=fitness; % Update alpha

Alpha_pos=Positions(i,:);

end

if fitness>Alpha_score && fitness<Beta_score

Beta_score=fitness; % Update beta

Beta_pos=Positions(i,:);

end

if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

Delta_score=fitness; % Update delta

Delta_pos=Positions(i,:);

end

end

%% 改进点:收敛因子改进,文献中式(7)

n = 1;%递减系数

if(l<0.5*Max_iter)

a = afinal + (aintit - afinal)*(1 + (cos((l-1)*pi/( Max_iter-1)))^n)/2;

else

a = afinal + (aintit - afinal)*(1 - (cos((l-1)*pi/( Max_iter-1)))^n)/2;

end

% Update the Position of search agents including omegas

for i=1:size(Positions,1)

for j=1:size(Positions,2)

r1=rand(); % r1 is a random number in [0,1]

r2=rand(); % r2 is a random number in [0,1]

A1=2*a*r1-a; % Equation (3.3)

C1=2*r2; % Equation (3.4)

D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

r1=rand();

r2=rand();

A2=2*a*r1-a; % Equation (3.3)

C2=2*r2; % Equation (3.4)

D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2

r1=rand();

r2=rand();

A3=2*a*r1-a; % Equation (3.3)

C3=2*r2; % Equation (3.4)

D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3

%% 改进点:基于步长欧氏距离的比例权重

S = abs(X1) + abs(X2)+abs(X3);

if S~=0 %防止分母为0

W1 = abs(X1)/(abs(X1) + abs(X2)+abs(X3));

W2 = abs(X2)/(abs(X1) + abs(X2)+abs(X3));

W3 = abs(X3)/(abs(X1) + abs(X2)+abs(X3));

else

W1=1;W2=1;W3=1;

end

Positions(i,j)=(W1*X1+X2*W2+X3*W3)/3;% Equation (3.7)

end

end

l=l+1;

Convergence_curve(l)=Alpha_score;

end

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]王秋萍,王梦娜,王晓峰.改进收敛因子和比例权重的灰狼优化算法[J].计算机工程与应用,2019,55(21):60-65+98.

🌈4 Matlab代码实现

相关文章:

【改进灰狼优化算法】改进收敛因子和比例权重的灰狼优化算法【期刊论文完美复现】(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…...

Linux C代码获取线程ID

Linux C代码获取线程ID gettid可以获取线程id,但是通过man gettid可以看到下面这两句 也就是说glibc没有为这个gettid封装系统调用&#xff0c;需要使用syscall。 #define _GNU_SOURCE#include <unistd.h>#include <sys/syscall.h>#include <sys/types.h>pi…...

基本密码技术

AESAES取代DES&#xff0c;是一种对称加密技术&#xff0c;分为AES-128/192/256, 其分组长度固定为128b&#xff0c;若最后一个分组长度不够&#xff0c;需要补全至128b长度。所支持的秘钥长度分别为128b/192b/256b.分组密码模式AES是对明文进行分组之后逐块进行加密&#xff0…...

【力扣周赛#334】6369. 左右元素和的差值 + 6368. 找出字符串的可整除数组 + 6367. 求出最多标记下标

目录 6369. 左右元素和的差值 - 前缀后缀和 ac 6368. 找出字符串的可整除数组 - 操作余数ac 6367. 求出最多标记下标 - 二分答案 贪心 6369. 左右元素和的差值 - 前缀后缀和 ac class Solution {public int[] leftRigthDifference(int[] nums) {int nnums.length;int[] re…...

行测-判断推理-图形推理-位置规律-平移

位置平移&#xff0c;选D空白每次顺时针移动一格&#xff0c;黑色圆每次逆时针移动2格选C两个黑色⚪&#xff0c;每次顺时针移动2格白色⚪&#xff0c;先到对角位置&#xff0c;再顺时针移动一格选B三角形的底&#xff0c;顺时针移动三角形的顶点&#xff0c;在正方形的内部顺时…...

数据库基础知识(一)

目录 什么是数据库 表&#xff0c;列&#xff0c;行 主键 什么是SQL 什么是数据库 数据库(database):保存有组织的数据的容器&#xff08;通常是一个文件或一组文件&#xff09;。 数据库软件(DMBS):又名数据库管理系统。数据库是通过数据库软件创建和操纵的容器。因为你并…...

MyBatis 的工作原理解析

文章目录前言一、mybatis工作原理1.1 流程图1.2 步骤解析1.3 代码实现前言 本文记录 Mybatis 的工作原理&#xff0c;做到知识梳理总结的作用。 一、mybatis工作原理 Mybatis 的总体工作原理流程图如下图所示 1.1 流程图 1.2 步骤解析 Mybatis 框架在工作时大致经过8个步骤…...

终端软件架构说

目录 零&#xff1a;前言 一&#xff0c;基于服务的架构 二&#xff0c;基于多进程多线程的架构 三&#xff0c;以数据为中心的架构 四&#xff0c;类Android的分层架构设计 五&#xff0c;总结 零&#xff1a;前言 谈到架构&#xff0c;可能大家的第一感觉是信息系统的…...

LearnOpenGL-入门-你好,三角形

本人刚学OpenGL不久且自学&#xff0c;文中定有代码、术语等错误&#xff0c;欢迎指正 我写的项目地址&#xff1a;https://github.com/liujianjie/LearnOpenGLProject LearnOpenGL中文官网&#xff1a;https://learnopengl-cn.github.io/ 文章目录图形渲染管线基本介绍着色器…...

SOEM 源码解析 ecx_init_redundant

/* Initialise lib in redundant NIC mode* 在冗余网卡模式下初始化lib库* param[in] context context struct* 上下文结构体* param[in] redport pointer to redport, redundant port data* 指向冗余端口的指针&#xff…...

网页唤起 APP中Activity的实现原理

疑问的开端大家有没有想过一个问题&#xff1a;在浏览器里打开某个网页&#xff0c;网页上有一个按钮点击可以唤起App。这样的效果是怎么实现的呢&#xff1f;浏览器是一个app&#xff1b;为什么一个app可以调起其他app的页面&#xff1f;说到跨app的页面调用&#xff0c;大家是…...

【操作系统】概述

基本特征 1. 并发 并发是指宏观上在一段时间内能同时运行多个程序&#xff0c;而并行则指同一时刻能运行多个指令。 并行需要硬件支持&#xff0c;如多流水线、多核处理器或者分布式计算系统。 操作系统通过引入进程和线程&#xff0c;使得程序能够并发运行 2. 共享 共享…...

Flume三种组件的选择对比

文章目录1.source2.channel3.sink1.source Source: 数据源:通过source组件可以指定让Flume读取哪里的数据&#xff0c;然后将数据传递给后面的 channel Flume内置支持读取很多种数据源&#xff0c;基于文件、基于目录、基于TCP\UDP端口、基于HTTP、Kafka的 等等、当然了&#x…...

响应性基础API

一.什么是proxy和懒代理&#xff1f;什么是proxy?proxy对象是用于定义基本操作的自定义行为(如&#xff1a;属性查找&#xff0c;赋值&#xff0c;枚举&#xff0c;函数调用等等)。什么是懒代理&#xff1f;懒代理&#xff1a;在初始化的时候不会进行全部代理&#xff0c;而是…...

剑指 Offer 25. 合并两个排序的链表

剑指 Offer 25. 合并两个排序的链表 难度&#xff1a;easy\color{Green}{easy}easy 题目描述 输入两个递增排序的链表&#xff0c;合并这两个链表并使新链表中的节点仍然是递增排序的。 示例1&#xff1a; 输入&#xff1a;1->2->4, 1->3->4 输出&#xff1a;1…...

顿悟日记(一)

目录2023年1月顿悟日记&#xff1a;2023年2月24日顿悟日记&#xff1a;2023年2月25日顿悟日记&#xff1a;2023年2月26日顿悟日记&#xff1a;顿悟的经历是如此的奇妙&#xff0c;且让人亢奋的事情。 2023年1月顿悟日记&#xff1a; 1.我是面向对象还是面向过程&#xff1f; …...

前端卷算法系列(二)

前端卷算法系列&#xff08;二&#xff09; 回文数 给你一个整数 x &#xff0c;如果 x 是一个回文整数&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 回文数是指正序&#xff08;从左向右&#xff09;和倒序&#xff08;从右向左&#xff09;读都是一样…...

网络应用之HTTP响应报文

HTTP响应报文学习目标能够知道HTTP响应报文的结构1. HTTP响应报文分析HTTP 响应报文效果图:响应报文说明:--- 响应行/状态行 --- HTTP/1.1 200 OK # HTTP协议版本 状态码 状态描述 --- 响应头 --- Server: Tengine # 服务器名称 Content-Type: text/html; charsetUTF-8 # 内容类…...

常见的CSS技巧

1.禁止长按图片弹出菜单 img {-webkit-touch-callout: none; // 主要用于禁止长按菜单。主针对webkit内核的浏览器&#xff1b; } /*或者 user-select , 是css3的新属性&#xff0c;用于设置用户是否能够选中文本*/ .img {-webkit-user-select: none;-khtml-user-select: none…...

算法进阶-动态规划

经典例题 大家肯定想用递归做 思路大概就是这样 递归到最后一行就是对应的D(i,j) 然后往上推 但是这样会超时&#xff0c;因为存在大量的重复计算 比如调用第一行MasSum(7)需要调用MaxSum(3)和MaxSum(8) 但是调用第二行MaxSum(3)还要调用3行的MaxSum(8)和3行的MaxSum(1) 第二行…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台

淘宝扭蛋机小程序系统的开发&#xff0c;旨在打造一个互动性强的购物平台&#xff0c;让用户在购物的同时&#xff0c;能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机&#xff0c;实现旋转、抽拉等动作&#xff0c;增…...