剑指 Offer 41. 数据流中的中位数
题目
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,[2,3,4] 的中位数是 3, [2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。 double findMedian() -返回目前所有元素的中位数。

思路
优先队列 / 堆
给定一长度为
N的无序数组,其中位数的计算方法:首先对数组执行排序(使用O(NlogN)时间),然后返回中间元素即可(使用O(1)时间)
本题可以根据上述思想,将数据流保存在一个列表中,并在添加元素时保持数组有序,给定一长度为 N 的无序数组,其中位数的计算方法:首先对数组执行排序(使用 O(NlogN) 时间),然后返回中间元素即可(使用 O(1)时间)
借助 堆 进行优化时间复杂度
建立两个堆,一个小顶堆A,一个大顶堆B,各自保存列表的一半元素 ,其中:
- A保存较大的一半,长度为
N/2或者(N+1)/2 - B保存较小的一半,长度为
N/2或者(N+1)/2
最后,中位数可以仅根据A,B的堆顶元素计算得到:

举个例子:数据流 [1,2,3,4,5,6,7,8]
如图所示,则[1,2,3,4]保存在大顶堆B,且堆顶元素为4(因为大顶堆堆顶元素最大),然后[5,6,7,8]保存在小顶堆A,且堆顶元素为5(因为小顶堆堆顶元素最小),这也是为什么大顶堆保存较小的一半,小顶堆保存较大的一半,为了就是可以通过A,B的堆顶元素求中位数
算法流程:
设元素总数为 N = m + n ,其中 m 和 n 分别为 A 和 B 中的元素个数
addNum(num)函数:添加元素,
(1)当m=n(即N为 偶数):需向A添加一个元素,即A和B中元素个数相等时,优先往A中先加元素。实现方法:将新元素num插入至B,再将B堆顶元素插入至A(这是为了始终保证A中存较大的一半,B中存较小的一半,因为num可能属于较小的一半,即B中的元素,所以要先加入B,再将B堆顶元素插入A);
举个例子,A中加入1需要先加入B中,然后将B的堆顶元素3加入A


(2)当 m≠n(即 N 为 奇数):需向 B 添加一个元素,此时情况即为A比B多一个元素。实现方法:将新元素 num 插入至 A ,再将A 堆顶元素插入至 B (同理,为了始终保证A中存较大的一半,B中存较小的一半,要先加入A,再将A的堆顶元素插入B,因为num可能属于较大的一般分,即属于A的元素);
举个例子,B中加入6需要先加入A中,然后将A的堆顶元素3加入B


findMedian()函数:找中位数
(1)当m=n(N为 偶数):则中位数为 (A的堆顶元素 +B的堆顶元素 ) / 2
(2)当m≠n(N为 奇数):则中位数为A的堆顶元素。
复杂度分析:
- 时间复杂度:
(1)查找中位数O(1): 获取堆顶元素使用O(1)时间;
(2)添加数字O(logN): 堆的插入和弹出操作使用O(logN)时间 - 空间复杂度
O(N):其中N为数据流中的元素数量,小顶堆A和大顶堆B最多同时保存N个元素。
java代码如下:
class MedianFinder{Queue<Integer> A,B;public MedianFinder() {A = new PriorityQueue<>();//java默认小顶堆,保存较大的一半B = new PriorityQueue<>((x,y) -> (y - x));//使用降序定义大顶堆(因为大顶堆堆顶元素最大,所以是降序,但是用于升序排序,因为每次出堆顶元素是最大的),保存较小的一半}public void addNum(int num){if(A.size() != B.size()){//如果A,B元素个数不相等,则往B中添加元素//但是为了始终保证A中存较大的一半,B中存较小的一半A.add(num);//要先往A中加B.add(A.poll());//然后再将A的堆顶元素加入B} else {//如果A,B元素个数相等,则往A中添加元素//同理为了始终保证A中存较大的一半,B中存较小的一半B.add(num);A.add(B.poll());//要先往B中加//然后再将B的堆顶元素加入A}}public double findMedian(){return A.size() != B.size() ? A.peek() : (A.peek() + B.peek()) / 2.0;}
}
相关文章:
剑指 Offer 41. 数据流中的中位数
题目 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。 例如,[2,3,4] 的中位数是…...
分布式架构下,Session共享有什么方案?
分布式架构下,Session共享有什么方案? 1.不要有Session:但是确实在某些场景下,是可以没有session的,其实在很多借口类系统当中,都提倡【API无状态服务】; 也就是每一次的接口访问,都…...
瀚博半导体载天VA1 加速卡安装过程
背景: 想用 瀚博半导体载天VA1 加速卡 代替 NVIDIA 显卡跑深度学习模型 感谢瀚博的周工帮助解答。 正文: 小心拔出 NVIDIA 显卡,在PCIe 接口插上瀚博半导体载天VA1加速卡,如图: 这时显示屏连接主板的集成显卡 卸载…...
服务降级和熔断机制
🏆今日学习目标: 🍀服务降级和熔断机制 ✅创作者:林在闪闪发光 ⏰预计时间:30分钟 🎉个人主页:林在闪闪发光的个人主页 🍁林在闪闪发光的个人社区,欢迎你的加入: 林在闪闪…...
史上最全最详细的Instagram 欢迎消息引流及示例
史上最全最详细的Instagram 欢迎消息引流及示例!关键词: Instagram 欢迎消息SaleSmartly(ss客服) 寻找 Instagram 欢迎消息示例,您可以用于您的业务。在本文中,我们将介绍Instagram欢迎消息的基础知识和好处…...
MDB 5 UI-KIT Bootstrap 5 最新版放送
顶级开源 UI 套件,Bootstrap v5 和 v4 的材料设计,jQuery 版本,数百个优质组件和模板,所有一致的,有据可查的,可靠的超级简单,1分钟安装简单的主题和定制 受到超过 3,000,000 名开发人员和设计师…...
做专家型服务者,尚博信助力企业数字化转型跑出“加速度” | 爱分析调研
01 从技术应用到业务重构,数字化市场呼唤专家型厂商 企业数字化转型是一个长期且系统性的变革过程。伴随着企业从信息化建设转向业务的数字化重构,市场对数字化厂商的能力要求也在升级。 早期的信息化建设主要是从技术视角切入,采用局部需求…...
CSS 重新认识 !important 肯定有你不知道的
重新认识 !important 影响级联规则 与 animation 和 transition 的关系级联层cascade layer内联样式!important 与权重 !important 与简写属性!important 与自定义变量!important 最佳实践 在开始之前, 先来规范一下文中的用于, 首先看 W3C 中关于 CSS 的一些术语定义吧. 下图…...
android 12添加系统字体并且设置为默认字体
需求:在11.0 12.0系统定制化开发中,在产品定制中,有产品需求对于系统字体风格不太满意,所以想要更换系统的默认字体,对于系统字体的修改也是常有的功能,而系统默认也支持增加字体,所以就来添加楷…...
LeetCode刷题系列 -- 1094. 拼车
车上最初有 capacity 个空座位。车 只能 向一个方向行驶(也就是说,不允许掉头或改变方向)给定整数 capacity 和一个数组 trips , trip[i] [numPassengersi, fromi, toi] 表示第 i 次旅行有 numPassengersi 乘客,接他们和放他们的…...
二叉查找树的应用 —— K模型和KV模型
文章目录前言1. K模型2. KV模型🍑 构建KV模型的树🍑 英汉词典🍑 统计水果出现的次数3. 总结前言 在上一篇文章中,我们进行了二叉查找树的实现(文章链接),那么今天主要探讨一下二叉查找树的应用…...
深度学习实战(11):使用多层感知器分类器对手写数字进行分类
使用多层感知器分类器对手写数字进行分类 1.简介 1.1 什么是多层感知器(MLP)? MLP 是一种监督机器学习 (ML) 算法,属于前馈人工神经网络 [1] 类。该算法本质上是在数据上进行训练以学习函数。给定一组特征和一个目标变量&#x…...
ThingsBoard-警报
1、使用 IoT 设备警报 ThingsBoard 提供了创建和管理与您的实体相关的警报的能力:设备、资产、客户等。例如,您可以将 ThingsBoard 配置为在温度传感器读数高于某个阈值时自动创建警报。当然,这是一个非常简化的案例,实际场景可能要复杂得多。 2、主要概念 下面让我们回…...
如何去阅读源码,我总结了18条心法
在聊如何去阅读源码之前,先来简单说一下为什么要去阅读源码,大致可分为以下几点原因:最直接的原因,就是面试需要,面试喜欢问源码,读完源码才可以跟面试官battle提升自己的编程水平,学习编程思想…...
排序:归并排序
一、归并 li[2,4,5,7,//1,3,6,8]#归并的前提是必须两部分排好序 def merge(li,low,mid,high):ilowjmid1ltmp[]while i<mid and j<high: #只要左右两边都有数if li[i]<li[j]:ltmp.append(li[i])i1else:ltmp.append(li[j])j1#while执行完,肯定有一部分没数…...
Allegro172版本线到铜皮不按照设定值避让的原因和解决办法
Allegro172版本线到铜皮不按照设定值避让的原因和解决办法 用Allegro做PCB设计的时候,有时会单独给某块铜皮附上线到铜皮额外再增加一个数值,如下图 在规则的基础上,额外再避让10mil 规则避让line到铜皮10.02mil 额外设置多避让10mil,避让的结果却是30.02mil,正确的是20.…...
小白该从哪方面入手学习大数据
大数据本质上是海量数据。 以往的数据开发,需要一定的Java基础和工作经验,门槛高,入门难。 如果零基础入门数据开发行业的小伙伴,可以从Python语言入手。 Python语言简单易懂,适合零基础入门,在编程语言…...
尚医通(十)数据字典加Redis缓存 | MongoDB
目录一、Redis介绍二、数据字典模块添加Redis缓存1、service_cmn模块,添加redis依赖2、service_cmn模块,添加Redis配置类3、在service_cmn模块,配置文件添加redis配置4、通过注解添加redis缓存5、查询数据字典列表添加Redis缓存6、bug&#x…...
为什么我们不再发明编程语言了?
上个世纪,数百种编程语言被发明出来,但是进入21世纪,当我们都进入互联网时代时,只剩那么寥寥几个了。 如果你翻一下TIOBE得编程语言排行榜,就会发现20年来,上蹿下跳的就是那几张老面孔:C , Java…...
预处理指令详解
预处理指令详解**1.预定义符号****2.#define****2.1 #define 定义标识符****2.2 #define 定义宏****2.3 #define 替换规则****2.4 #和##****#的作用****##的作用****2.5 带副作用的宏参数****2.6 宏和函数的对比****宏和函数对比图****2.7 命名约定****3.#undef**4.条件编译4.1…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
