Mxnet框架使用
目录
1.mxnet推理API
2.MXNET模型转ONNX
3.运行示例
1.mxnet推理API
# 导入 MXNet 深度学习框架
import mxnet as mx if __name__ == '__main__':# 指定预训练模型的 JSON 文件json_file = 'resnext50_32x4d' # 指定模型的参数文件params_file = 'resnext50_32x4d-0000.params' # 使用 MXNet 加载模型的架构和参数sym, arg_params, aux_params = mx.model.load_checkpoint(json_file, 0) # 创建一个模型对象mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None) # 绑定模型参数和输入数据的形状mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))]) # 设置模型的参数mod.set_params(arg_params, aux_params)# 将输入数据转换为 MXNet 的 NDArray 格式data = mx.nd.array(img) # 使用模型进行推理,获取输出并转换为 NumPy 数组output = mod.predict(data).asnumpy()
2.MXNET模型转ONNX
import numpy as np
import mxnet as mx
from mxnet.contrib import onnx as onnx_mxnetsym = "resnext50_32x4d-symbol.json"
params = "resnext50_32x4d-0000.params"
input_shape = (1 ,3 ,224 ,224)
onnx_file = './resnext50.onnx'converted_model_path = onnx_mxnet.export_model(sym, params, [input_shape], np.float32, onnx_file)
# onnx 1.14.0
# numpy 1.23.2
3.运行示例
具体代码和模型见百度网盘:
https://pan.baidu.com/s/1iQELVg7xNjiIlSZZp47xag
提取码: 24ei
# 导入 NumPy 库,并将其别名命名为 np
import numpy as np
# 导入 OpenCV 库
import cv2 # 导入 MXNet 深度学习框架
import mxnet as mx
# 导入时间库,用于计时
import time # 定义一个函数 show_top5,用于显示前5个类别及其概率
def show_top5(outputs):# 使用 softmax 函数对输出进行概率归一化output = softmax(outputs[0]) # 对概率从高到低排序,获取排序后的索引reverse_sort_index = np.argsort(output)[::-1] # 打印标识,表示接下来是前5个类别print('-----TOP 5-----') # 循环遍历前5个类别for i in range(5): # 打印类别索引和对应的概率 print(reverse_sort_index[i], ':', output[reverse_sort_index[i]]) # 定义 softmax 函数,用于计算 softmax 概率
def softmax(x):return np.exp(x) / sum(np.exp(x))if __name__ == '__main__':# 从文件中加载图像img = cv2.imread('./space_shuttle_224.jpg') # 对图像进行预处理,将其从 BGR 格式转换为 RGB 格式,并调整数据类型为 float32,# 然后进行维度转置和形状重塑,以匹配模型的输入格式 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB).astype('float32').transpose(2, 0, 1).reshape(1, 3, 224, 224)# 指定预训练模型的 JSON 文件json_file = 'resnext50_32x4d' # 指定模型的参数文件params_file = 'resnext50_32x4d-0000.params' # 记录开始时间t1 = time.time() # 使用 MXNet 加载模型的架构和参数sym, arg_params, aux_params = mx.model.load_checkpoint(json_file, 0)# 创建一个模型对象 mod = mx.mod.Module(symbol=sym, context=mx.cpu(), label_names=None) # 绑定模型参数和输入数据的形状mod.bind(for_training=False, data_shapes=[('data', (1, 3, 224, 224))]) # 设置模型的参数 mod.set_params(arg_params, aux_params)# 将输入数据转换为 MXNet 的 NDArray 格式data = mx.nd.array(img) # 使用模型进行推理,获取输出并转换为 NumPy 数组output = mod.predict(data).asnumpy() # 记录结束时间t2 = time.time()# 打印推理所需的时间 print("inf_time:", t2 - t1) # 调用显示前5个类别及其概率的函数 show_top5(output) # 打印 "done" 表示脚本执行完成 print('done')
相关文章:
Mxnet框架使用
目录 1.mxnet推理API 2.MXNET模型转ONNX 3.运行示例 1.mxnet推理API # 导入 MXNet 深度学习框架 import mxnet as mx if __name__ __main__:# 指定预训练模型的 JSON 文件json_file resnext50_32x4d # 指定模型的参数文件params_file resnext50_32x4d-0000.params # 使…...
每个程序员都应该自己写一个的:socket包装类
每个程序员都应该有自己的网络类。 下面是我自己用的socket类,支持所有我自己常用的功能,支持windows和unix/linux。 目录 客户端 服务端 非阻塞 获取socket信息 完整代码 客户端 作为socket客户端,只需要如下几个功能: //…...
JMeter:断言之响应断言
一、断言的定义 断言用于验证取样器请求或对应的响应数据是否返回了期望的结果。可以是看成验证测试是否预期的方法。 对于接口测试来说,就是测试Request/Response,断言即可以针对Request进行,也可以针对Response进行。但大部分是对Respons…...
RLHF的替代算法之DPO原理解析:从Zephyr的DPO到Claude的RAILF
前言 本文的成就是一个点顺着一个点而来的,成文过程颇有意思 首先,如上文所说,我司正在做三大LLM项目,其中一个是论文审稿GPT第二版,在模型选型的时候,关注到了Mistral 7B(其背后的公司Mistral AI号称欧洲…...
U盘显示无媒体怎么办?方法很简单
当出现U盘无媒体情况时,您可以在磁盘管理工具中看到一个空白的磁盘框,并且在文件资源管理器中不会显示出来。那么,导致这种问题的原因是什么呢?我们又该怎么解决呢? 导致U盘无媒体的原因是什么? 当您遇到上…...
进销存管理系统如何提高供应链效率?
供应链和进销存系统之间有着密切的联系。进销存系统是供应链管理的一部分,用于跟踪和管理产品的采购、库存和销售。进销存管理是供应链管理的核心流程之一,它有助于提高效率、降低成本、增加盈利,同时确保客户满意度,这对于企业的…...
用AI魔法打败AI魔法
全文均为AI创作。 此为内容创作模板,在发布之前请将不必要的内容删除当前,AI技术的广泛应用为社会公众提供了个性化智能化的信息服务,也给网络诈骗带来可乘之机,如不法分子通过面部替换语音合成等方式制作虚假图像、音频、视频仿…...
Java 中的final:不可变性的魔法之旅
🎏:你只管努力,剩下的交给时间 🏠 :小破站 Java 中的final:不可变性的魔法之旅 前言第一:了解final变量第二:final方法第三:final类第四:final参数第五&#…...
Alfred 5 for mac(最好用的苹果mac效率软件)中文最新版
Alfred 5 Mac是一款非常实用的工具,它可以帮助用户更加高效地使用Mac电脑。用户可以学会使用快捷键、全局搜索、快速启动应用程序、使用系统维护工具、快速复制粘贴文本以及自定义设置等功能,以提高工作效率。 Alfred for Mac 的一些主要功能包括&#…...
常见的Python解释器,你了解多少?
Python,作为一种解释型编程语言,它的运行过程也遵循“程序源码—>解释器(字节码)—>虚拟机(可执行文件)”的流程。 在编写Python程序时,是在扩展名为.py的文件中进行编写,.py…...
在 Python 中使用 Selenium 按文本查找元素
我们将通过示例介绍在Python中使用selenium通过文本查找元素的方法。 在 Python 中使用 Selenium 按文本查找元素 软件测试是检查应用程序是否满足用户需求的技术。 该技术有助于使应用程序成为无错误的应用程序。 软件测试可以手动完成,也可以通过某些软件完成。…...
【Notepad++】搜索返回窗口(find result)被隐藏或遮挡如何恢复?
Notepad 搜索返回窗口被隐藏或遮挡如何恢复 1:F72:F12恢复之后可以多看一些Notepad中快捷键的使用,以备不时之需。 1:F7 打开任意文件,搜索任意内容,按F7,焦点切换到Find result。 按AltSpace,出现小窗口点击"移动…...
应用软件安全编程--05预防 XML 注入
如果用户有能力使用结构化XML 文档作为输入,那么他能够通过在数据字段中插入 XML 标签来 重写这个 XML 文档的内容。 XML 解析器会将这些标签按照正常标签进行解析。下面是一段在线商 店的 XML 代码,主要用于查询后台数据库。 <item)<descri…...
JavaEE-博客系统3(功能设计)
本部分内容为:实现登录功能;强制要求用户登录;实现显示用户信息;退出登录;发布博客 该部分的后端代码如下: Overrideprotected void doPost(HttpServletRequest req, HttpServletResponse resp) throws Ser…...
椭圆滤波器
之前的文章 信号去噪 中列出了7种常用的信号去噪算法,对于后两种算法——深度学习和奇异值分解(SVD),我现在也不太理解,就先不写了。 很多朋友留言又提了一些算法,今天一起来聊聊椭圆滤波器。 椭圆滤波器(Elliptic F…...
Mac 下安装golang环境
一、下载安装包 安装包下载地址 下载完成,直接继续----->下一步到结束即可安装成功; 安装成功之后,验证一下; go version二、配置环境变量 终端输入vim ~/.zshrc进入配置文件,输入i进行编辑 打开的不管是空文本…...
前端面试大纲
一、CSS 1.说一下CSS的盒模型。 在HTML页面中的所有元素都可以看成是一个盒子 盒子的组成:内容content、内边距padding、边框border、外边距margin 盒模型的类型: 标准盒模型 margin border padding content IE盒模型 margin content(border padd…...
CAN(Controller Area Network)是一种用于在汽车和工业领域中进行通信的串行总线系统(附加案例)
CAN(Controller Area Network)是一种用于在汽车和工业领域中进行通信的串行总线系统。它是一种高可靠性、多主机、多节点通信协议,主要用于实时控制和数据传输。 CAN数据是指在CAN总线上通过CAN协议进行通信传输的数据。CAN总线上的数据被分…...
代码随想录day53|1143.最长公共子序列、 1035.不相交的线、 53. 最大子序和
1143.最长公共子序列 dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j] 因此是if(nums1[i-1] nums2[j-1]) 1035.不相交的线 和上一题一样 53. 最大子序和 int result dp[0]; 不是0,因为dp[i]有…...
xilinx fpga ddr mig axi
硬件 参考: https://zhuanlan.zhihu.com/p/97491454 https://blog.csdn.net/qq_22222449/article/details/106492469 https://zhuanlan.zhihu.com/p/26327347 https://zhuanlan.zhihu.com/p/582524766 包括野火、正点原子的资料 一片内存是 1Gbit 128MByte 16bit …...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
