当前位置: 首页 > news >正文

机器学习经典算法——决策树(Decision Tree)

决策树的基本原理

决策树是⼀种分⽽治之的决策过程。⼀个困难的预测问题,通过树的分⽀节点,被划分成两个或多个较为简单的⼦集,从结构上划分为不同的⼦问题。将依规则分割数据集的过程不断递归下去。随着树的深度不断增加,分⽀节点的⼦集越来越⼩,所需要提的问题数也逐渐简化。当分⽀节点的深度或者问题的简单程度满⾜⼀定的停⽌规则时, 该分⽀节点会停⽌分裂。

决策树是一种自上而下,对样本数据进行树形分类的过程,由结点和有向边组成。结点分为内部节点和叶结点,其中内部结点表示一个特征或属性,叶结点表示类别。从顶部根节点开始,所有样本聚在一起。经过根结点的划分,样本别分到不同的子结点中。在根据子结点的特征进一步划分,直至所有样本都被归到某一个类别(即叶结点)中。

  • 优点:不需要任何领域知识或参数假设;适合⾼维数据;短时间内处理⼤量数据,得到可⾏且效果较好的结果;能够同时处理数据型和常规性属性。
  • 缺点:对于各类别样本数量不⼀致数据,信息增益偏向于那些具有更多数值的特征;易于过拟合;忽略属性之间的相关性;不⽀持在线学习。

决策树的三要素

一般而言,决策树的生成包括特征选择树的构造树的剪枝三个过程。

  1. 特征选择:从训练数据中众多的特征中选择⼀个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从⽽衍⽣出不同的决策树算法。
  2. 决策树⽣成:根据选择的特征评估标准,从上⾄下递归地⽣成⼦节点,直到数据集不可分则决策树停⽌⽣长。树结构来说,递归结构是最容易理解的⽅式。
  3. 剪枝:决策树容易过拟合,⼀般来需要剪枝,缩⼩树结构规模、缓解过拟合。剪枝技术有预剪枝和后剪枝两种。

决策树学习基本算法

在这里插入图片描述

熵与信息增益

熵可以表⽰样本集合的不确定性,熵越⼤,样本的不确定性就越⼤。

假设随机变量X的可能取值有x1,x2, …, xn,对于每⼀个可能的取值xi,其概率为:
在这里插入图片描述
随机变量的熵为:
在这里插入图片描述
对于样本集合,假设样本有k个类别,每个类别的概率为在这里插入图片描述其中|Ck|为类别为k的样本个数, |D| 为样本总数。样本集合D的熵为:
在这里插入图片描述

信息增益
假设划分前样本集合D的熵为H(D)。使⽤某个特征A划分数据集D,计算划分后的数据⼦
集的熵为H(D|A),则A特征的信息增益为:
在这里插入图片描述

决策树的剪枝方法

剪枝处理是决策树学习算法⽤来解决过拟合问题的⼀种办法。通过对决策树进行剪枝,剪掉一些枝叶,提升模型的泛化能力。决策树的剪枝通常有两种方法:预剪枝(pre-pruning)和后剪枝(post-pruning)。

  • 预剪枝:在生成决策树的过程中提前停止树的增长;
  • 后剪枝:⽣成决策树以后,再⾃下⽽上对⾮叶结点进⾏剪枝,得到简化版的剪枝决策树。

预剪枝

预剪枝的核心思想是在树中结点进行扩展之前,先计算当前的划分是否能带来模型泛化能力的提升,如果不能,则不再继续生长子树。此时可能存在不同类别的样本同时存于结点中,按照多数投票的原则判断该结点所属类别。预剪枝对于何时停止决策树的生长有以下几种方法。

  1. 当树到达一定深度的时候,停止树的生长。
  2. 当到达当前结点的样本数量小于某个阈值的时候,停止树的生长。
  3. 计算每次分裂对测试集的准确度提升,当小于某个阈值的时候,不再继续扩展。

预剪枝具有思想直接、算法简单、效率高等特点,适合解决大规模问题。但预剪枝存在一定局限性,有欠拟合的风险,虽然当前的划分会导致测试集准确率降低,但在之后的划分中,准确率可能会有显著上升。

后剪枝

后剪枝的核心思想是让算法生成一棵完全生 长的决策树,然后从最底层向上计算是否剪枝。剪枝过程将子树删除,用一个叶子结点替代,该结点的类别同样按照多数投票的原则进行判断。同样地,后剪枝也可以通过在测试集上的准确率进行判断,如果剪枝过后准确率有所提升,则进行剪枝。

相比于预剪枝,后剪枝方法通常可以得到泛化能力更强的决策树,但时间开销会更大。

常见的后剪枝方法包括:错误率降低剪枝( Reduced Error Pruning,REP)、悲观剪枝( Pessimistic Error Pruning, PEP) 、代价复杂度剪枝( Cost Complexity Pruning, CCP )、最小误差剪枝(MinimumEror Pruning, MEP )、CVP(Critical Value Pruning)、OPP (OpttimalPruning)等

相关文章:

机器学习经典算法——决策树(Decision Tree)

决策树的基本原理 决策树是⼀种分⽽治之的决策过程。⼀个困难的预测问题,通过树的分⽀节点,被划分成两个或多个较为简单的⼦集,从结构上划分为不同的⼦问题。将依规则分割数据集的过程不断递归下去。随着树的深度不断增加,分⽀节…...

MySQl总结

文章目录MySQL数据库的常见考点1、ACID事务原理事务持久性事务原子性MVCC基本概念MVCC基本原理undo logundo log版本链readviewMVCC实现原理RC读已提交RR可重复读MVCC实现原理总结2、并发事务引发的问题3、事务隔离级别4、索引索引结构BTreeHash面试题索引分类思考题语法性能分…...

【学习笔记】NOIP爆零赛7

结论专场,结果被踩暴了 青鱼和序列 赛时的做法是,维护∑aii\sum a_i\times i∑ai​i的取值,发现只和最后一次操作222的位置有关,于是递推O(n)O(n)O(n)解决。 赛后发现还有更神奇的结论 第二个结论是,第一次进行操作…...

一文读懂账号体系产品设计

一、账号体系的概念及价值账号体系是用户在各平台上的通行证。平台给与用户可持续的服务,用户在平台上获取价值,中间的媒介,便是账号体系。阿境将其理解为维系用户与平台之间的枢纽。注:本文中,账号账户,二…...

从“入门”到“专家”,一份3000字完整的性能测试体系的知识分享

随着科技的飞速发展,软件产品广泛应用于各个行业领域,人们对计算机和网络的依赖性越来越大,对新奇事物也越来越感兴趣,成千上万的用户活跃在庞大的网络系统中,这给提供服务的系统带来严重的负荷,"高并…...

构建对话机器人:Rasa3安装和基础入门

在开源对话机器人中,Rasa社区很活跃,在国内很多企业也在使用Rasa做对话机器人,有rasa开发经验的往往是加分项。 当年实习的时候接触到了Rasa,现在工作中也使用Rasa,因此,写写一些经验文档,有助后…...

Spark计算框架入门笔记

Spark是一个用于大规模数据处理的统一计算引擎 注意:Spark不仅仅可以做类似于MapReduce的离线数据计算,还可以做实时数据计算,并且它还可以实现类似于Hive的SQL计算,等等,所以说它是一个统一的计算引擎 既然说到了Spar…...

入职数据分析公认的好书|建议收藏

众所周知,数据分析经常出现在我们的日常生活中,各行各业都需要数据分析。可你知道什么是数据分析?它在企业里到底扮演什么角色?以及如果我们自己也想拥有数据分析的能力,以便更好的满足数据分析的需求,我们…...

Linux查找文件和目录,重定向输出 ,系统默认运行级别的查看和设置理论和练习

♥️作者:小刘在C站 ♥️个人主页:小刘主页 ♥️每天分享云计算网络运维课堂笔记,努力不一定有收获,但一定会有收获加油!一起努力,共赴美好人生! ♥️夕阳下,是最美的绽放&#xff0…...

Redis源码---键值对中字符串的实现,用char*还是结构体

目录 前言 为什么 Redis 不用 char*? char* 的结构设计 操作函数复杂度 SDS 的设计思想 SDS 结构设计 SDS 操作效率 紧凑型字符串结构的编程技巧 小结 前言 对于 Redis 来说,键值对中的键是字符串,值有时也是字符串在 Redis 中写入一…...

算法 - 剑指Offer 表示数值的字符串

题目 请实现一个函数用来判断字符串是否表示数值(包括整数和小数)。 数值(按顺序)可以分成以下几个部分: 若干空格 一个 小数 或者 整数 (可选)一个 ‘e’ 或 ‘E’ ,后面跟着一个 …...

初识机器学习

监督学习与无监督学习supervised learning:监督学习,给出的训练集中有输入也有输出(标签)(也可以说既有特征又有目标),在此基础上让计算机进行学习。学习后通过测试集测试给相应的事物打上标签。…...

VsCode安装PlatformIO 开发ESP arduino,买的板子或者随便ESP,PlatformIO添加Board(不是自定义Board)

这次主要记录怎么给新建选板子的时候没有的板子下程序 我这里是一块 WiFi Kit 32 (V3) PlatformIO里面只有到V2 先从头开始,安装PlatformIO 安装PlatformIO 直接搜索安装 安装有时候会比较慢,左侧出现蚂蚁图标之后点击会显示 右下角会提示正在安…...

golang 复杂数据结构解析

[{"key":"15275771","pack":{"1":[{"name":"消息配置","id":15275771,"version":1,"createUser":"molaifeng","data":"test"}]},"callback&qu…...

不怕被AirTag跟踪?苹果Find My技术越来越普及

苹果的 AirTag 自推出以来,如何有效遏制用户用其进行非法跟踪,是摆在苹果面前的一大难题。一家为执法部门制造无线扫描设备的公司近日通过 KickStarter 平台,众筹了一款消费级产品,可帮助用户检测周围是否存在追踪的 AirTag 等设备…...

Linux驱动中的open函数是如何从软件打通硬件呢?

一、前言 打开文件是Linux系统中最基本的操作之一,open函数可以实现打开文件的功能。下面我将为您介绍open函数打通上层到底层硬件的详细过程。 二、open函数打通软硬件介绍 open函数是系统调用中的一种,其原型定义在头文件unistd.h中: #…...

Java 基础语法

Java 是一门广泛使用的编程语言,由于其简单易学和可移植性,已成为开发 Web 应用程序、移动应用程序、桌面应用程序以及企业级应用程序的首选语言之一。在本文中,我们将探讨 Java 的基础语法,包括变量、数据类型、运算符、控制流等…...

python下如何安装并使用matplotlib(画图模块)

在搜索命令中输入cmd,以管理员身份运行。 输入以下命令,先对pip安装工具进行升级 pip install --upgrade pip 升级完成 之后使用pip安装matplotlib pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple 也可以使用pycharm来安装matp…...

系统分析师---计算机网络思维导图

TCP、IP协议簇(4星) 传输协议:TCP有连接、可靠、有回应机制、三次握手基于TCP的应用层协议:POP3:邮件收取,默认端口110SMTP:邮件发送,默认端口25FTP:文件传输协议&#…...

算法练习(七)数据分类处理

一、数据分类处理 1、题目描述: 信息社会,有海量的数据需要分析处理,比如公安局分析身份证号码、 QQ 用户、手机号码、银行帐号等信息及活动记录。采集输入大数据和分类规则,通过大数据分类处理程序,将大数据分类输出…...

nohup ./startWebLogic.sh >out.log 2>1 解析

在启动weblogic的时候我们经常看到如下的命令: nohup ./startWebLogic.sh >out.log 2>&1 & 从09年开始用weblogic到现在已经过去3年多了 ,今天终于将该命令理解清楚了。 其中 0、1、2分别代表如下含义: 0 – stdin (standa…...

OpenCV 坡度计算(基于DEM,C++版本)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 假设一个点位于曲面 z = f ( x , y ) z=f(x,y) z=...

IDEA上使用git,知道这几步操作就够了!

前言由于一年多没用git(种种原因不堪回首),所以在上班当天,整个人都不好了,从拉取代码到提交代码,整整花费了不少时间,而且有些操作都不知道啥作用,点也不是,不点也不是&…...

Shell的退出状态(if语句判断的是某个命令的退出状态)

以下内容源于C语言中文网的学习与整理,如有侵权,请告知删除。 一、退出状态 (1)不管是 Bash 内置命令,还是外部的 Linux 命令,还是自定义的 Shell 函数,当它运行结束或者退出时,都…...

Scala面向对象

与java的区别和联系 类的定义: class Person{ var name "scala" def sayHello(){ println("Hello,"name) } def getName name } 注意:如果在定义方法的时候指定了(),那么在调用的时候()可写可不写,如果在定…...

LLaMA-META发布单卡就能跑的大模型

2023年2月25日,Meta使用2048张A100 GPU,花费21天训练的Transformer大模型LLaMA开源了。 1.4T tokenstakes approximately 21 days 以下是觉得论文中重要的一些要点 1)相对较小的模型也可以获得不错的性能 研究者发现在给定计算能力限制的情…...

第一篇自我介绍(单片机)

小白的单片机之旅 🤔自我介绍🤔 😊学习目标😊 😜关于单片机😜 🌝目标公司🌝 🍀小结🍀 🎉博客主页:小智_x0___0x_ 🎉欢…...

Tik Tok品牌营销,如何做好内容打法

TikTok 上做好品牌营销,并不能只关注品牌所获得的视频浏览量和点赞量,根据潜在客户需求生成的内容策略同样至关重要。通过建立营销漏斗模型,可以将 TikTok 策略分为三种不同类型的内容,从具有广泛吸引力的内容转变为具有高度针对性…...

2023年5月软考软件设计师备考经验

一、考试目标: 通过本考试的合格人员能根据软件开发项目管理和软件工程的要求,按照系统总体设计规格说明书进行软件设计,编写程序设计规格说明书等相应的文档,组织和指导程序员编写、调试程序,并对软件进行优化和集成…...

SpringBoot 2.x ——使用 mail 实现邮件发送

文章目录前言环境、版本等pom依赖引入springboot项目配置文件获取邮箱授权码配置properties文件定义接口信息接收类编写邮件发送服务类编写接口swagger测试1、简单邮件发送2、html格式发送(支持附件)前言 最近再看xxl-job的源码,其中在邮件告警通知中使用到了告警信…...

网站关键词排名优化技巧/免费网页制作网站

需要全部代码或者更多前端学习资料的可以私信我“前端”,自动回复。今天是520。一句温柔的问候,一束美丽的鲜花,一段真情的告白。但是作为一名与众不同的程序员,我们可不仅仅拥有上面的传情方法,别忘了每个人的手上可是…...

技术支持 海安网站建设/怎么知道自己的域名

惯例广告一发,对于初学真,真的很有用www.java1234.com,去试试吧! 找到了两种方式: 1、同个new 对象的形式对 B对象的某一个属性复制 而这个值,就是当前页面的查询值 [构造函数传参,在new B的时候…...

网站空间最便宜/seo专业培训班

定义: 指多个对象间存在一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式、模型-视图模式,它是对象行为型模式。 优点: 1、降低了目标与观…...

青岛cms建站系统/seo是干啥的

自己编写了一个工具类,处理页面提交json格式数据到后台,再进行处理成Java对象数据 1、DTO:Data Transfer Object,数据传送对象 2、对于日期格式的问题,也已经处理 3、json-lib-2.2.2-jdk13.jar (2.1在日期数…...

市住房住房城乡建设委官方网站/重庆优化seo

softmax回归的从零开始实现 xiaoyao 动手学深度学习 tensorflow2.1.0 这一节我们来动手实现softmax回归。首先导入本节实现所需的包或模块。 import tensorflow as tf import numpy as np import sys print(tf.__version__)2.1.0获取和读取数据 使用Fashion-MNIST数据集&am…...

园区网互联及网站建设/怎么推广自己的微信号

今天我们来讨论一下止回阀安装位置。那么止回阀的安装位置如何确定呢?泵前安装与泵后安装止回阀有何区别,泵前安装适用于哪些地方?止回阀通常要配合其他阀门一起使用,那么跟其他阀门配合使用时,止回阀要安装在哪里呢&a…...