dbever连接kerberos认证的hive
文章目录
- 一、本地安装kerberos客户端
- 二、本地kerberos客户端登录
- 三、dbever连接hive
一、本地安装kerberos客户端
-
下载地址:https://web.mit.edu/kerberos/dist/index.html

-
安装:下一步或者自定义安装即可
-
安装后会自动生成配置文件:C:\ProgramData\MIT\Kerberos5\krb5.ini
-
向管理员要krb5.conf配置文件,将krb5.conf配置文件的内容覆盖到C:\ProgramData\MIT\Kerberos5\krb5.ini里
-
创建路径:C:\temp
-
配置环境变量:
ps:C:\temp\krb5cache的路径默认是不存在的,只需要默认创建C:\temp即可,krb5cache是kerberos认证后自动生成的
变量名:KRB5_CONFIG,变量值:C:\ProgramData\MIT\Kerberos5\krb5.ini 变量名:KRB5CCNAME,变量值:C:\temp\krb5cache -
配置完环境变量后,重启计算机使其生效。
二、本地kerberos客户端登录
-
输入cmd进入docs界面
-
进入kerberos的安装路径:cd E:\kerberos\user\bin
-
向管理员要认证用户的keytab密钥文件,我这里为hadoop.keytab
-
输入指令登录kerberos:kinit -kt C:\Users\86188\Desktop/hadoop.keytab hadoop/hdp155
-
查看是否登录成功:klist

-
登录MIT Kerberos Ticket Manager客户端查看

-
说明kerberos登录成功
三、dbever连接hive
-
打开dbever的安装路径下的dbeaver.ini配置文件,在最后加上三行
-Djava.security.krb5.debug=true -Djava.security.krb5.conf=C:/ProgramData/MIT/Kerberos5/krb5.ini -Djavax.security.auth.useSubjectCredsOnly=false -
打开dbever客户端,创建连接

-
编辑驱动

-
这里的url模板填写hadoop平台连接hive的url串,端口为hiveserver2端口,默认10000

-
设置驱动:如果没有hive驱动,需要先手动下载hive驱动,在查找累,并且选择驱动

-
测试连接,成功

-
成功!
相关文章:
dbever连接kerberos认证的hive
文章目录一、本地安装kerberos客户端二、本地kerberos客户端登录三、dbever连接hive一、本地安装kerberos客户端 下载地址:https://web.mit.edu/kerberos/dist/index.html 安装:下一步或者自定义安装即可 安装后会自动生成配置文件:C:\Pro…...
pom依赖产生的各种问题
文章目录问题一(org.apache.ibatis.session.Configuration)解决方法问题二(ERROR StatusLogger No log4j2)解决方法问题三(com.google.common.util.concurrent)解决方法问题四(start bean documentationPluginsBootstrapper)解决方法问题五(Unable to infer base url. )解决办法…...
RPC编程:RPC框架设计目标
一:前导知识 Http是超文本传输协议,跨平台性非常好。Http可以传输文本,更多的时候传输的是文本,我们也是可以传输二进制的,我们基于Http进行下载的时候,就是走的Http协议。 Tcp协议,处理的时候…...
RBAC 权限模型介绍
RBAC 权限: 一、关系: 这基于角色的访问控制的结构就叫RBAC结构。 二、RBAC 重要对象: 用户(Employee):角色施加的主体;用户通过拥有某个或多个角色以得到对应的权限。角色(Role&…...
西电面向对象程序设计核心考点汇总(期末真题)
文章目录前言一、往年真题与答案1.1 改错题1.2 读程题1.3 面向对象程序设计二、易错知识点2.1 构造函数2.2 静态成员变量和静态成员函数2.3 权限2.4 继承2.5 多态总结前言 主要针对西安电子科技大学《面向对象程序设计》的核心考点进行汇总,包含总共8章的核心简答。…...
判断一个用字符串表达的数字是否可以被整除
一.问题引出 当一个数字很大的时候,我们常用字符串进行表达,(超过了int和long等数据类型可以存储的最大范围),但是这个时候我们该如何判断他是否可以被另一个数整除呢? 这个时候我们不妨这样来考虑问题,每次将前边求模之后的数保存下来,然后乘以10和这一位的数字进行相加的操…...
这是一款值得开发人员认真研究的软件,数据库优化,应用服务器安全优化...
1.查询数据库死锁相关信息2.查看数据库的链接情况3.当前实例上的所有用户4.创建数据库独立密码5.查看数据库使用的端口号6.当前数据库设置的最大连接数7.当前数据库最大的理论可连接数8.当前数据库实例的连接数9.当前数据库连接数10.当前数据库连接超时设置11.当前sqlserver 超…...
栈与队列小结
一、理论基础1.队列是先进先出,栈是先进后出2.栈和队列是STL(C标准库)里面的两个数据结构。栈提供push和pop等等接口,所有元素必须符合先进后出规则,所以栈不提供走访功能,也不提供迭代器。3.栈是以底层容器…...
SpringBoot整合(五)HikariCP、Druid数据库连接池—多数据源配置
在项目中,数据库连接池基本是必不可少的组件。在目前数据库连接池的选型中,主要是 Druid ,为监控而生的数据库连接池。HikariCP ,号称性能最好的数据库连接池。 在Spring Boot 2.X 版本,默认采用 HikariCP 连接池。而…...
ShardingSphere水平、垂直分库、分表和公共表
目录一、ShardingSphere简介二、ShardingSphere-分库分表1、垂直拆分(1)垂直分库(2)垂直分表2、水平拆分(1)水平分库(2)水平分表三、水平分库操作1、创建数据库和表2、配置分片的规则…...
《分布式技术原理与算法解析》学习笔记Day24
分布式缓存 在计算机领域,缓存是一个非常重要的、用来提升性能的技术。 什么是分布式缓存? 缓存技术是指用一个更快的存储设备存储一些经常用到的数据,供用户快速访问。 分布式缓存是指在分布式环境或者系统下,把一些热门数据…...
强化学习RL 02: Value-based Reinforcement Learning
DQN和TD更新算法。 目录 Review 1. Deep Q-Network(DQN) 1.1 Approximate the Q*(s,a) Function 1.2 Apply DQN to Play Game 1.3 Temporal Difference(TD) Learning 1.4 TD Learning for DQN 1.4.1 TD使用条件 condition 1.4.2 Train DQN using TD learning 1.5 summ…...
08_MySQL聚合函数
1. 聚合函数介绍什么是聚合函数聚合函数作用于一组数据,并对一组数据返回一个值。聚合函数类型AVG()SUM()MAX()MIN()COUNT()注意:聚合函数不能嵌套调用。比如不能出现类似“AVG(SUM(字段名称))”形式的调用。1.1 AVG和SUM函数可以对数值型数据使用AVG 和…...
「TCG 规范解读」词汇表
可信计算组织(Ttrusted Computing Group,TCG)是一个非盈利的工业标准组织,它的宗旨是加强在相异计算机平台上的计算环境的安全性。TCG于2003年春成立,并采纳了由可信计算平台联盟(the Trusted Computing Platform Alli…...
第三阶段-03MyBatis 中使用XML映射文件详解
MyBatis 中使用XML映射文件 什么是XML映射 使用注解的映射SQL的问题: 长SQL需要折行,不方便维护动态SQL查询拼接复杂源代码中的SQL,不方便与DBA协作 MyBatis建议使用XML文件映射SQL才能最大化发挥MySQL的功能 统一管理SQL, 方…...
从0开始学python -41
Python3 命名空间和作用域 命名空间 先看看官方文档的一段话: A namespace is a mapping from names to objects.Most namespaces are currently implemented as Python dictionaries。 命名空间(Namespace)是从名称到对象的映射,大部分的命名空间都是…...
如何将Google浏览器安装到D盘(内含教学视频)
如何将Google浏览器安装到D盘(内含教学视频) 教学视频下载链接地址:https://download.csdn.net/download/weixin_46411355/87503968 目录如何将Google浏览器安装到D盘(内含教学视频)教学视频下载链接地址:…...
三战阿里测试岗,成功上岸,面试才是测试员涨薪真正的拦路虎...
第一次面试阿里记得是挂在技术面上,当时也是技术不扎实,准备的不充分,面试官出的面试题确实把我问的一头雾水,还没结束我就已经知道我挂了这次面试。 第二次面试,我准备的特别充分,提前刷了半个月的面试题…...
Java代码弱点与修复之——ORM persistence error(对象关系映射持久错误)
弱点描述 ORM persistence error, ORM 持久化错误 。表示 ORM 工具在尝试将对象保存到数据库中时出现了问题。可能的原因包括: 数据库连接错误:ORM 工具无法连接到数据库,或者连接到数据库的权限不足。数据库表结构错误:ORM 工具无法正确映射对象和数据库表之间的关系,可…...
原始GAN-pytorch-生成MNIST数据集(原理)
文章目录1. GAN 《Generative Adversarial Nets》1.1 相关概念1.2 公式理解1.3 图片理解1.4 熵、交叉熵、KL散度、JS散度1.5 其他相关(正在补充!)1. GAN 《Generative Adversarial Nets》 Ian J. Goodfellow, Jean Pouget-Abadie, Yoshua Be…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
Web中间件--tomcat学习
Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机,它可以执行Java字节码。Java虚拟机是Java平台的一部分,Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
在 Visual Studio Code 中使用驭码 CodeRider 提升开发效率:以冒泡排序为例
目录 前言1 插件安装与配置1.1 安装驭码 CodeRider1.2 初始配置建议 2 示例代码:冒泡排序3 驭码 CodeRider 功能详解3.1 功能概览3.2 代码解释功能3.3 自动注释生成3.4 逻辑修改功能3.5 单元测试自动生成3.6 代码优化建议 4 驭码的实际应用建议5 常见问题与解决建议…...
基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...
