当前位置: 首页 > news >正文

Stacked hourglass networks for human pose estimation代码学习

Stacked hourglass networks for human pose estimation
https://github.com/princeton-vl/pytorch_stacked_hourglass
这是一个用于人体姿态估计的模型,只能检测单个人
作者通过重复的bottom-up(高分辨率->低分辨率)和top-down(低分辨率->高分辨率)以及中间监督(深监督)来提升模型的性能

模型

残差

模型里的残差都是不改变分辨率的
在这里插入图片描述
在这里插入图片描述

class Conv(nn.Module):def __init__(self, inp_dim, out_dim, kernel_size=3, stride=1, bn=False, relu=True):super(Conv, self).__init__()self.inp_dim = inp_dimself.conv = nn.Conv2d(inp_dim, out_dim, kernel_size, stride, padding=(kernel_size - 1) // 2, bias=True)self.relu = Noneself.bn = Noneif relu:self.relu = nn.ReLU()if bn:self.bn = nn.BatchNorm2d(out_dim)def forward(self, x):assert x.size()[1] == self.inp_dim, "{} {}".format(x.size()[1], self.inp_dim)x = self.conv(x)if self.bn is not None:x = self.bn(x)if self.relu is not None:x = self.relu(x)return xclass Residual(nn.Module):def __init__(self, inp_dim, out_dim):super(Residual, self).__init__()self.relu = nn.ReLU()self.bn1 = nn.BatchNorm2d(inp_dim)self.conv1 = Conv(inp_dim, out_dim // 2, 1, relu=False)self.bn2 = nn.BatchNorm2d(out_dim // 2)self.conv2 = Conv(out_dim // 2, out_dim // 2, 3, relu=False)self.bn3 = nn.BatchNorm2d(out_dim // 2)self.conv3 = Conv(out_dim // 2, out_dim, 1, relu=False)self.skip_layer = Conv(inp_dim, out_dim, 1, relu=False)if inp_dim == out_dim:self.need_skip = Falseelse:self.need_skip = Truedef forward(self, x):  # ([1, inp_dim, H, W])if self.need_skip:residual = self.skip_layer(x)  # ([1, out_dim, H, W])else:residual = x  # ([1, out_dim, H, W])out = self.bn1(x)out = self.relu(out)out = self.conv1(out)  # ([1, out_dim / 2, H, W])out = self.bn2(out)out = self.relu(out)out = self.conv2(out)  # ([1, out_dim / 2, H, W])out = self.bn3(out)out = self.relu(out)out = self.conv3(out)  # ([1, out_dim, H, W])out += residual  # ([1, out_dim, H, W])return out  # ([1, out_dim, H, W])

最前面

首先模型使用了一个卷积核为7∗77*777步长为2的卷积,然后使用了一个残差和下采样,将图像从256∗256256*256256256降到了64∗6464*646464
接着接了两个残差

对应论文这一段
在这里插入图片描述

self.pre = nn.Sequential(  # ([B, 3, 256, 256])Conv(3, 64, 7, 2, bn=True, relu=True),  # ([B, 64, 128, 128])Residual(64, 128),  # ([B, 128, 128, 128])Pool(2, 2),  # ([B, 128, 64, 64])Residual(128, 128),  # ([B, 128, 64, 64])Residual(128, inp_dim)  # ([B, 256, 64, 64]))

在这里插入图片描述

单个Hourglass

在每一次最大池化之前,模型会产生一个分支,一条最大池化,另一条会接卷积(残差)
合并之前,走最大池化的的分支会做一次上采样,然后两个分支按元素加
(对应论文这两句)
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
代码对应这个图
(然而论文的图里最前面的残差不知道怎么算。。。)
在这里插入图片描述

class Hourglass(nn.Module):def __init__(self, n, f, bn=None, increase=0):super(Hourglass, self).__init__()nf = f + increaseself.up1 = Residual(f, f)# Lower branchself.pool1 = Pool(2, 2)self.low1 = Residual(f, nf)self.n = n# Recursive hourglassif self.n > 1:self.low2 = Hourglass(n - 1, nf, bn=bn)else:self.low2 = Residual(nf, nf)self.low3 = Residual(nf, f)self.up2 = nn.Upsample(scale_factor=2, mode='nearest')def forward(self, x):  # ([1, f, H, W])up1 = self.up1(x)  # ([1, f, H, W])pool1 = self.pool1(x)  # ([1, f, H/2, W/2])low1 = self.low1(pool1)  # ([1, nf, H/2, W/2])low2 = self.low2(low1)  # ([1, nf, H/2, W/2])low3 = self.low3(low2)  # ([1, f, H/2, W/2])up2 = self.up2(low3)  # ([1, f, H, W])return up1 + up2  # ([1, f, H, W])

热力图

模型会接两个1∗11*111的卷积来产生热力图(heatmap)
在这里插入图片描述
(虽然不知道为啥代码里还有一个残差)
在这里插入图片描述

中间监督

将前一个Hourglass,heatmap,heatmap之前的特征通过2个1∗11*111的卷积加在一起
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

https://towardsdatascience.com/using-hourglass-networks-to-understand-human-poses-1e40e349fa15#:~:text=Hourglass%20networks%20are%20a%20type,image%20into%20a%20feature%20matrix.
https://medium.com/@monadsblog/stacked-hourglass-networks-14bee8c35678

相关文章:

Stacked hourglass networks for human pose estimation代码学习

Stacked hourglass networks for human pose estimation https://github.com/princeton-vl/pytorch_stacked_hourglass 这是一个用于人体姿态估计的模型,只能检测单个人 作者通过重复的bottom-up(高分辨率->低分辨率)和top-down&#xff0…...

SpringCloud(五)MQ消息队列

MQ概念常见消息模型helloworld案例实现实现spring AMQP发送消息实现spring AMQP接收消息工作消息队列实现发布订阅模型Fanout Exchange实现DirectExchange实现TopicExchange实现DirectExchange 和FanoutExchange的差异DirectExchange 和TopicExchange的差异基于RabbitListener注…...

SQL语法基础汇总

三年前的存稿 默认端口号 3306 超级用户名 root 登录 mysql -uroot -p / mysql -uroot -proot 退出 exit / quit 服务器版本 SELECT VERSION(); 当前日期 SELECT NOW(); 当前用户 SELECT USER(); 备份 mysqldump -uroot -p 数据库名称 > 保存的路径 还原 create database1-…...

惠普星14Pro电脑开机不了显示错误代码界面怎么办?

惠普星14Pro电脑开机不了显示错误代码界面怎么办?有用户电脑开机之后,进入了一个错误界面,里面有一些错误代码。重启电脑之后依然是无法进入到桌面中,那么这个情况怎么去进行解决呢?我们可以重装一个新系统&#xff0c…...

顺序表的构造及功能

定义顺序表是一种随机存储都结构,其特点是表中的元素的逻辑顺序与物理顺序相同。假设线性表L存储起始位置为L(A),sizeof(ElemType)是每个数据元素所占的存储空间的大小,则线性表L所对应的顺序存储如下图。顺序表的优缺点优点:随机…...

cesium: 绘制线段(008)

第008个 点击查看专栏目录 本示例的目的是介绍如何在vue+cesium中绘制线段,左键点击开始绘制,右键点击取消绘制 直接复制下面的 vue+cesium源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式示例源代码(共139行)相关API参考:专栏目标示例效果 配置方式 1)…...

HTML、CSS学习笔记4(3D转换、动画)

目录 一、空间转换(3D转换) 1.空间位移 语法: 取值:(正负均可) 透视: 2.空间旋转 3.立体呈现 二、动画(animation) 1.动画的使用 先定义动画 再调用定义好的动画 …...

java的分布式锁

什么是分布式锁 分布式锁是指分布式环境下,系统部署在多个机器中,实现多进程分布式互斥的一种锁。为了保证多个进程能看到锁,锁被存在公共存储(比如 Redis、Memcache、数据库等三方存储中),以实现多个进程并…...

17- TensorFlow实现手写数字识别 (tensorflow系列) (项目十七)

项目要点 模型创建: model Sequential()添加卷积层: model.add(Dense(32, activationrelu, input_dim100)) # 第一层需要 input_dim添加dropout: model.add(Dropout(0.2))添加第二次网络: model.add(Dense(512, activationrelu)) # 除了first, 其他层不要输入shape添加输出…...

Polkadot 基础

Polkadot Polkadot联合并保护了一个不断增长的专业区块链生态系统,称为parachains。Polkadot上的应用程序和服务可以安全地跨链通信,形成真正可互操作的去中心化网络的基础。 真正的互操作性 Polkadot支持跨区块链传输任何类型的数据或资产,…...

spring源码编译

spring源码编译1、安装gradle2、拉取源码3、配置gradle文件来源及镜像仓库4、预编译5、验证6、可能遇到的报错6.1、jdk.jfr不存在6.2、checkstyleMain6.3、org.gradle.api.artifacts.result.ComponentSelectionReason.getDescription()Ljava/lang/String6.4、其他jdk&#xff1…...

防盗链是什么?带你了解什么是防盗链

目录 什么是防盗链 防盗链的定义 防盗链的产生 防盗链的实现 什么是防盗链 防盗链其实就是采用服务器端编程,通过url过滤技术实现的防止盗链的软件。 比如:photo.abc.com/video.mp4 这个下载地址,如果没有装防盗链,别人就能轻…...

Linux基础命令-fdisk管理磁盘分区表

文章目录 fdisk 命令介绍 命令格式 基本参数 1)常用参数 2)fdisk菜单操作说明 创建一个磁盘分区 1)创建分区 2)创建交换分区 参考实例 1) 显示当前分区的信息 2) 显示每个磁盘的分区信息 命令…...

(四)K8S 安装 Nginx Ingress Controller

ingress-nginx 是 Kubernetes 的入口控制器,使用NGINX作为反向代理和负载均衡器 版本介绍 版本1:Ingress NGINX Controller(k8s社区的ingres-nginx) 以 NGINX 开源技术为基础(kubernetes.io),可在GitHub的 kubernet…...

高频面试题

MyISAM和InnoDB是MySQL两种常见的存储引擎,它们之间有以下几点区别: 事务支持:MyISAM不支持事务处理,而InnoDB支持事务处理。 行级锁:MyISAM只支持表级锁,而InnoDB支持行级锁,可以避免并发访问…...

js 字节数组操作,TCP协议组装

js字节数组,进制转换js基础知识数组 Array扩展操作符三个点(...)ArrayBufferslice() 数组复制reduce 对数组中的每个元素执行一个提供的函数,将其结果汇总为单个返回值splice 数组删除,添加,替换js 字节数组转数字以及…...

JavaScript的引入并执行-包含动态引入与静态引入

JavaScript的引入并执行-包含动态引入与静态引入 JavaScript引入方式 html文件需要引入JavaScript代码&#xff0c;才能在页面里使用JavaScript代码。 静态引入 行内式 直接在DOM标签上使用 <!DOCTYPE html> <html lang"en"> <head><meta ch…...

第四阶段01-酷鲨商城项目准备

1. 关于csmall-product项目 这是“酷鲨商城”大项目中的“商品管理”项目&#xff0c;是一个后台管理项目&#xff08;给管理员&#xff0c;或运营人员使用的项目&#xff0c;并不是普通用户使用的&#xff09;&#xff0c;并且&#xff0c;只会涉及与发布商品可能相关的功能开…...

Uncaught ReferenceError: jQuery is not defined

今天在拉取项目部署到本地的时候遇到了一个问题特此记录一下 &#xff08;以后闭坑&#xff09; 我和同事同时拉取了一样的代码&#xff0c;结果同事的页面加载正常而我的页面像被狗啃了一样&#xff0c;知道是js的问题但是不知道问题出在哪里&#xff1f;后来还是同事帮我解决…...

面试阿里测开岗,被面试官针对,当场翻脸,把我的简历还给我,疑似被拉黑...

好家伙&#xff0c;金三银四一到&#xff0c;这奇葩事可真是多&#xff0c;前两天和粉丝聊天&#xff0c;他说前段时间面试阿里的测开岗&#xff0c;最后和面试官干起来了。 我问他为什么&#xff0c;他说没啥&#xff0c;就觉得面试官太装了&#xff0c;就爱问一些虚而不实的…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中&#xff0c;手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力&#xff0c;既支持点击、长按、拖拽等基础单一手势的精细控制&#xff0c;也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...