【Python数据挖掘入门】2.2文本分析-中文分词(jieba库cut方法/自定义词典load_userdict/语料库分词)
中文分词就是将一个汉字序列切分成一个一个单独的词。例如:

另外还有停用词的概念,停用词是指在数据处理时,需要过滤掉的某些字或词。

一、jieba库
安装过程见:https://blog.csdn.net/momomuabc/article/details/128198306
jieba库的基础与实例:https://blog.csdn.net/momomuabc/article/details/128219592
jieba库基础功能
1.分词函数jieba.cut
import jiebafor i in jieba.cut("我爱python"):print(i,end=' ')#利用end参数取消换行
--输出
我 爱 python
2.向词库添加词jieba.add_word()
如果想添加一些专业词汇进入词库,可以使用jieba.add_word()函数
例如:
import jiebaseg_list=jieba.cut("真武七截阵和天罡北斗阵哪个更厉害呢?")
for i in seg_list:print(i,end=" ")
--此时输出
真武 七截阵 和 天罡 北斗 阵 哪个 更 厉害 呢 ?
--可以看到真武七截阵和天罡北斗阵两个专业词汇被拆分开了,那么进行词组添加
jieba.add_word("真武七截阵")
jieba.add_word("天罡北斗阵")
seg_list=jieba.cut("真武七截阵和天罡北斗阵哪个更厉害呢?")
for i in seg_list:print(i,end=" ")
--再次输出后,可以看到真武七截阵和天罡北斗阵已经被识别为单独的词
真武七截阵 和 天罡北斗阵 哪个 更 厉害 呢 ?
3.导入词库jieba.load_userdict()
当需要大量导入专业词汇时,使用jieba.add_word()一个个添加会过于麻烦,可以使用jieba.load_userdict()方法将词库一次性导入。
词库中的单词需已每行一个词的方式保存,例如:

jieba.load_userdict("D:\\2.2 中文分词\\2.2\\金庸武功招式.txt")
二、文章分词
1.搭建语料库
上一节已经导入了语料库:https://blog.csdn.net/momomuabc/article/details/129183499
代码如下:
import os
import os.path#读取文件路径
import codecs#转换文件读取格式
import pandasfilePaths = []#设置存储文件路径的变量
fileContents = []#存储文件内容的变量
for root, dirs, files in os.walk("D:\SogouC.mini\Sample"):#os.walk()返回文件的目录,子目录,文件名,详情见上篇for name in files:filePath = os.path.join(root, name)#将目录和子目录拼接为目前的文件路径filePaths.append(filePath)#将文件路径存入路径变量f = codecs.open(filePath, "r", "utf-8")#以utf-8的格式打开当前路径下的文件fileContent = f.read()#读取文件内容f.close()#关闭文件fileContents.append(fileContent)#将文件内容存入内容变量
#将文件路径和内容存入DataFrame中
corpos=pandas.DataFrame({"filePath":filePaths,"fileContent":fileContents
}
)
2.语料库分词
分词后需要注明,每个分词的来源,因此需要取上面的corpos对象里的filepath,并对filecontent进行分词。
import jieba
Path=[]
segments=[]
for index,row in corpos.iterrows():#返回corpos的内容filepath=row["filePath"]#取其中的filepath字段segs=jieba.cut(row["fileContent"])#取其中的filecontent字段,并进行分词for seg in segs:#将分词后的内容遍历segments.append(seg)#存入segmentsPath.append(filepath)#同时存储filepath
segmentDataFrame=pandas.DataFrame(#将分词结果存为数据框{"filepath":Path,"segment":segments}
)
iterrow()方法可以返回所有的行索引index,以及该行的所有内容row。
相关文章:
【Python数据挖掘入门】2.2文本分析-中文分词(jieba库cut方法/自定义词典load_userdict/语料库分词)
中文分词就是将一个汉字序列切分成一个一个单独的词。例如: 另外还有停用词的概念,停用词是指在数据处理时,需要过滤掉的某些字或词。 一、jieba库 安装过程见:https://blog.csdn.net/momomuabc/article/details/128198306 ji…...
Meta利用视觉信息来优化3D音频模型,未来将用于AR/VR
我们知道,Meta为了给AR眼镜打造智能助手,专门开发了第一人称视觉模型和数据集。与此同时,该公司也在探索一种将视觉和语音融合的AI感知方案。相比于单纯的语音助手,同时结合视觉和声音数据来感知环境,可进一步增强智能…...
openlayers加载离线地图并实现深色地图
问题背景 我们自己一直使用的openlayergeoserver自己发布的地图,使用的是矢量地图。但是由于政府地图大都使用为天地图,所以需要将geoserver的矢量地图更改为天地图,并且依旧是搭配openlayers来使用。 解决步骤 一:加载离线地图&a…...
socket,tcp,http三者之间的区别和原理
目录 一、OSI模型也称七层网络模型 1、TCP/IP连接 1.1三次握手与四次挥手的简单理解:(面试重点) 1.2面试考题:如果已经建立了连接,但是客户端突然出现故障了怎么办? 1.3 socket、tcp、http三者之间有什…...
红日(vulnstack)1 内网渗透ATTCK实战
环境准备 靶机链接:百度网盘 请输入提取码 提取码:sx22 攻击机系统:kali linux 2022.03 网络配置: win7配置: kali配置: kali 192.168.1.108 192.168.111.129 桥接一块,自定义网卡4 win7 1…...
ik 分词器怎么调用缓存的词库
IK 分词器是一个基于 Java 实现的中文分词器,它支持在分词时调用缓存的词库。 要使用 IK 分词器调用缓存的词库,你需要完成以下步骤: 创建 IK 分词器实例 首先,你需要创建一个 IK 分词器的实例。可以通过以下代码创建一个 IK 分…...
ROS1/2机器人操作系统与时间Time的不解之缘
时间对于机器人操作系统非常重要。所有机器人类的编程中所涉及的变量如果需要在网络中传输都需要这个数据结构的时间戳。宏观上,ROS1、ROS2各版本都有官方支持的时间节点。ROS时钟--支持时间倒计时小工具效果如下:如果要部署机器人操作系统,R…...
华为OD机试真题2022(JAVA)
华为机试题库已换 →→→ 华为OD机试2023(JAVA) 以下题目为旧版题库,供大家课外消遣 基础题: 序号题目分值1查找众数及中位数1002出错的或电路1003连续字母长度1004分班1005计算面积1006最远足迹1007判断一组不等式是否满足约束…...
【3】MyBatis+Spring+SpringMVC+SSM整合一套通关
三、SpringMVC 1、SpringMVC简介 1.1、什么是MVC MVC是一种软件架构的思想,将软件按照模型、视图、控制器来划分 M:Model,模型层,指工程中的JavaBean,作用是处理数据 JavaBean分为两类: 一类称为实体…...
20道前端高频面试题(附答案)
ES6新特性 1.ES6引入来严格模式变量必须声明后在使用函数的参数不能有同名属性, 否则报错不能使用with语句 (说实话我基本没用过)不能对只读属性赋值, 否则报错不能使用前缀0表示八进制数,否则报错 (说实话我基本没用过)不能删除不可删除的数据, 否则报错不能删除变量delete p…...
android EditText设置后缀
有两种实现方案。 方案一:是自己写一个TextWatcher。 方案二:是重写TextView的getOffsetForPosition方法,返回一个计算好的offset。 我在工作时,使用的是方案一。在离职之后,我还是对这个问题耿耿于怀,所以…...
prometheus+cadvisor监控docker
官方解释 cAdvisor(ContainerAdvisor)为容器用户提供了对其运行容器的资源使用和性能特性的了解。它是一个正在运行的守护程序,用于收集、聚合、处理和导出有关正在运行的容器的信息。具体来说,它为每个容器保存资源隔离参数、历史…...
正演(1): 二维声波正演模拟程序(中心差分)Python实现
目录 1、原理: 1)二维声波波动方程: 编辑 2)收敛条件(不是很明白) 3)雷克子波 4)二维空间衰减函数 5)边界吸收条件 (不是很明白。。) 2、编程实现 1)参数设置&…...
珠海数据智能监控器+SaaS平台 轻松实现SMT生产管控
数据智能监控器 兼容市面上99%的SMT设备 直接读取设备生产数据与状态,如:计划产出、实际产出、累计产出、停机、节拍、线利用率、直通率、停产时间、工单状态、OEE…… 产品功能价值 ◎ OEE不达标报警,一手掌握生产效能 ◎ 首检/巡检/成…...
习题22对前面21节的归纳总结
笨方法学python --习题22 Vi---Rum 于 2021-01-12 14:16:10 发布 python 习题22 这节内容主要是归纳总结 ex1.py 第一次学习 1.print:打印 2.# :是注释的意思,井号右边的内容不再执行 3.end"":,在句子结尾加上这个就不会再换行…...
使用Vite快速构建前端React项目
一、Vite简介 Vite是一种面向现代浏览器的一个更轻、更快的前端构建工具,能够显著提升前端开发体验。除了Vite外,前端著名的构建工具还有Webpack和Gulp。目前,Vite已经发布了Vite3,Vite全新的插件架构、丝滑的开发体验,可以和Vue3完美结合。 相比Webpack和Gulp等构建工具…...
人工智能高等数学--人工智能需要的数学知识_微积分_线性代数_概率论_最优化---人工智能工作笔记0024
然后我们看一下人工智能中需要的数学知识 数学知识是重要的,对于理解人工智能底层原理来说很重要,但是工作中 工作中一般都不会涉及的自己写算法之类的,只是面试,或者理解底层原理的时候需要 然后看一下人工智能需要哪些数学知识 这里需要微积分 线性代数 概率论 最优化的知识…...
阿里大数据之路总结
一、数据采集 二、数据同步 2.1、数据同步方式: 数据同步的三种方式:直连方式、数据文件同步、数据库日志解析方式 关系型数据库的结构化数据:MYSQL、Oracle、DB2、SQL Server非关系型数据库的非结构化数据(数据库表形式存储&am…...
ABAP中Literals的用法(untyped literal vs. typed literal)
1. 什么是Literals ? Literals的字面意思即“文字”。其实,Literals就是在ABAP代码中直接指定的一个字符串,但注意哦,这个字符串并不意味着其类型一定是string哦。 要弄清这个概念,就要清楚ABAP对于Literals 的定义和处理方式。…...
tensorflow1.14.0安装教程
1首先电脑安装好Anaconda3(Anaconda介绍、安装及使用教程 - 知乎 (zhihu.com),) 蟒蛇 |全球最受欢迎的数据科学平台 (anaconda.com) 2打开Anaconda Prompt(本人更新win11后,主菜单不再显示,那么我们可以打…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
