当前位置: 首页 > news >正文

D. Moscow Gorillas(双指针 + 区间分析)

Problem - D - Codeforces

在冬天,莫斯科动物园的居民非常无聊,尤其是大猩猩。你决定娱乐他们,带了一个长度为n的排列p到动物园。长度为n的排列是由n个从1到n的不同整数以任意顺序组成的数组。例如,[2,3,1,5,4]是一个排列,但[1,2,2]不是一个排列(2在数组中出现两次),[1,3,4也不是一个排列(n3,但4在数组中出现)。大猩猩有自己的长度为n的排列q。他们建议你计算整数l,r (1 r n)对的数量,使得MEX([p1, Pl+1,,p,]) = MEX([a,9+1,,a])。数列的MEX是数列中缺少的最小正整数。例如,MEX([1,3]) = 2,MEX([5]) = 1, MEX([3,1,2,6]) = 4。你不想拿自己的健康冒险,所以你也不敢拒绝大猩猩。输入第一行包含一个整数n (1 <n<2.105)-排列长度。第二行包含n个整数p1 P2。,Pn (1 <pi Sn)-排列p的元素。第三行包含n个整数q1,92,,an (1 <gi Sn)-排列q的元素。输出打印一个整数-合适的对l和r的数量。 

Examples

input

Copy

 

3

1 3 2

2 1 3

output

Copy

2

input

Copy

 

7

7 3 6 2 1 5 4

6 7 2 5 3 1 4

output

Copy

16

input

Copy

 

6

1 2 3 4 5 6

6 5 4 3 2 1

output

Copy

11

题解:

我们假设L,R分别是此时排列p,q1的位置,

那么MEX(1)l,r成立的情况有三种

1.均在L左侧

2.均在R右侧

3.在L,R之间

假设x,y是此时p,q排列的位置

接着考虑MEX = 2的情况。MEX = 2时,说明区间里一定包含1,但不含2,那么2的位置就不能出现在【L,R】之间。设x为序列p中2的位置,y为序列q中2的位置,x<=y, x,y要么同时出现在【1,L-1】一侧,要么同时出现在【R+1,n】一侧,要么一边在【1,L-1】一边在【R+1,n】。

成立的情况只有三种

1.都在L的左边 (L-y)*(n-R+1)

2.都在R的右边 L*(x-R)

3.x在L左边,y在R右边 (L-x)*(y-R)

随着MEX()增大,L,R区间会逐渐增大,或不变,所以要不断更新,

#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<vector>
#include<map>
#include<queue>
using namespace std;
#define int long long
const int N = 6e5 + 10;
int p[N],q[N];
int posp[N];
int posq[N];
int mod = 998244353;
int C(int n)
{return (n+1)*n/2;//区间l == r的情况也要算所以是n*(n-1)/2 + n
}
void solve()
{int n;cin >> n;int ans = 0; for(int i = 1;i <= n;i++){cin >> p[i];posp[p[i]] = i;}for(int i = 1;i <= n;i++){cin >> q[i];posq[q[i]] = i;}int L = posp[1];int R = posq[1];if(L > R)swap(L,R);ans += C(L-1);ans += C(max(0ll,R-L-1));ans += C(n - R);for(int i = 2;i <= n;i++){int x = posp[i];int y = posq[i];if(x > y)swap(x,y);if(y < L){ans += (L - y)*(n - R+1);}else if(x > R){ans += L*(x - R);}else if(x < L&&y > R){ans += (L - x)*(y - R);}L = min(L,x);R = max(R,y);}cout << ans + 1;//+1是整个排列都算一种
}
signed main()
{int t = 1;
//	cin >> t;while(t--){solve();} 
}

相关文章:

D. Moscow Gorillas(双指针 + 区间分析)

Problem - D - Codeforces 在冬天&#xff0c;莫斯科动物园的居民非常无聊&#xff0c;尤其是大猩猩。你决定娱乐他们&#xff0c;带了一个长度为n的排列p到动物园。长度为n的排列是由n个从1到n的不同整数以任意顺序组成的数组。例如&#xff0c;[2,3,1,5,4]是一个排列&#xf…...

华为OD机试题,用 Java 解【相同数字的积木游戏 1】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…...

Python实现GWO智能灰狼优化算法优化BP神经网络分类模型(BP神经网络分类算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。1.项目背景灰狼优化算法(GWO)&#xff0c;由澳大利亚格里菲斯大学学者 Mirjalili 等人于2014年提出来的一种群智能优…...

无线蓝牙耳机哪个牌子好?2023质量好的无线蓝牙耳机推荐

近几年&#xff0c;随着蓝牙技术的不断进步&#xff0c;使用蓝牙耳机的人也越来越多。蓝牙耳机的出现&#xff0c;不仅能让我们摆脱线带来的约束&#xff0c;还能提升我们学习和工作的效率。最近看到很多人问&#xff0c;无线蓝牙耳机哪个牌子好&#xff1f;下面&#xff0c;我…...

Qt之QTableView自定义排序/过滤(QSortFilterProxyModel实现,含源码+注释)

一、效果示例图 1.1 自定义表格排序示例图 本文过滤条件为行索引取余2等于0时返回true&#xff0c;且从下图中可以看到&#xff0c;奇偶行是各自挨在一起的。 1.2 自定义表格过滤示例图 下图添加两列条件&#xff08;当前数据大于当前列条件才返回true&#xff0c;且多个列…...

电商(强一致性系统)的场景设计

领域拆分&#xff1a;如何合理地拆分系统&#xff1f; 一般来说&#xff0c;强一致性的系统都会牵扯到“锁争抢”等技术点&#xff0c;有较大的性能瓶颈&#xff0c;而电商时常做秒杀活动&#xff0c;这对系统的要求更高。业内在对电商系统做改造时&#xff0c;通常会从三个方面…...

算法与数据结构(一)

一、时间复杂度 一个操作如果和样本的数据量没有关系&#xff0c;每次都是固定时间内完成的操作&#xff0c;叫做常数操作。 时间复杂度为一个算法流程中&#xff0c;常数操作数量的一个指标。常用O(读作big O)来表示。具体来说&#xff0c;这个算法流程中&#xff0c;发生了多…...

【Python】元组如何创建?

嗨害大家好鸭&#xff01;我是小熊猫~ Python 元组 Python 的元组与列表类似&#xff0c; 不同之处在于元组的元素不能修改。 元组使用小括号&#xff0c;列表使用方括号。 元组创建很简单&#xff0c;只需要在括号中添加元素&#xff0c; 并使用逗号隔开即可。 如下实例…...

qt操作文件以及字符串转换

//从文件加载英文属性与中文属性对照表QFile file(":/propertyname.txt");if (file.open(QFile::ReadOnly)) {//QTextStream方法读取速度至少快百分之30#if 0while(!file.atEnd()) {QString line file.readLine();appendName(line);}#elseQTextStream in(&file)…...

数组中只出现一次的两个数字(异或法思路)

题目简介 一个数组中只有2个数字只有一个&#xff0c;其他数字都有两个。找出这两个数字。a, b 用HashMap记录就不说了。 这里记录一下用异或的方式解决。 由于异或特性为自己异或自己为0。a^a 0;所以可以异或数组中的所有数字得出 a^b 的结果&#xff0c;其他相同的都消掉…...

python支持的操作系统有哪些

支持python开发环境的系统有Linux、OSX和windows&#xff0c;以及所有主要的操作系统中。 Linux&#xff0c;Linux系统是为编程而设计的&#xff0c;因此在大多数Linux计算机中&#xff0c;都默认安装了Python。编写和维护Linux的人认为会使用这种系统进行编程。要在Linux中运…...

S3C2440开发环境搭建

拿出了之前的S3C2440开发板&#xff0c;然后把移植uboot、移植内核、制作根文件系统、设备树编写驱动等几项再做一遍&#xff0c;这篇文章先记录下环境搭建过程&#xff0c;以及先把现成的uboot、内核、根文件系统下载进去&#xff0c;看看开发板还能不能用&#xff0c;先熟悉一…...

软件测试之测试用例

测试用例 1. 测试用例定义 测试用例又叫做test case&#xff0c;是为某个特殊目标而编制的一组测试输入、执行条件以及预期结果,以便测试某个程序路径或核实是否满足某个特定需求。 2. 编写测试用例的原因 2.1 理清思路&#xff0c;避免遗漏 如果测试的项目大而复杂&#…...

null和undefined的区别有哪些?

null和undefined的区别有哪些&#xff1f;相同点不同点undefinednull总结相同点 1.null和undefined都是js的基本数据类型 2.undefined和null都是假值&#xff08;falsy&#xff09;,都能作为条件进行判断&#xff0c;所以在绝大多数情况下两者在使用上没有区别 if(undefined)…...

【强烈建议收藏:计算机网络面试专题:HTTP协议、HTTP请求报文和响应报文、HTTP请求报文常用字段、HTTP请求方法、HTTP响应码】

一.知识回顾 之前我们一起学习了HTTP1.0、HTTP1.1、HTTP2.0协议之前的区别、以及URL地址栏中输入网址到页面展示的全过程&&DNS域名解析的过程、HTTP协议基本概念以及通信过程、HTTPS基本概念、SSL加密原理、通信过程、中间人攻击问题、HTTP协议和HTTPS协议区别。接下来…...

关于Java中的静态块讲解

文章目录类的加载特性与时机类加载的特性类加载的时机static的三个常用地方什么是静态块?特点写法静态块 static怎么用?类的加载特性与时机 在介绍static之前可以先看看类的相关 类加载的特性 在JVM的生命周期里&#xff0c;每个类只会被加载一次。 类加载的原则&#xf…...

ledcode【用队列实现栈】

目录 题目描述&#xff1a; 解析题目 代码解析 1.封装一个队列 1.2封装带两个队列的结构体 1.3封装指向队列的结构体 1.4入栈函数实现 1.5出栈函数实现 1.6取栈顶数据 1.7判空函数实现 题目描述&#xff1a; 解析题目 这个题我是用c语言写的&#xff0c;所以队列的pu…...

【基础算法】双指针----字符串删减

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

Billu靶场黑盒盲打——思路和详解

一、信息收集 1、探测内网主机IP可以使用各种扫描工具比如nmap&#xff0c;我这里用的是自己编写的。 nmap -n 192.168.12.0/24 #扫描IP&#xff0c;发现目标主机 2、先不着急&#xff0c;先收集一波它的端口&#xff08;无果&#xff09; nmap -n 192.168.12.136 -p 1-10000…...

【2363. 合并相似的物品】

来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 描述&#xff1a; 给你两个二维整数数组 items1 和 items2 &#xff0c;表示两个物品集合。每个数组 items 有以下特质&#xff1a; items[i] [valuei, weighti] 其中 valuei 表示第 i 件物品的 价值 &#xff0c;we…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...