当前位置: 首页 > news >正文

scipy实现单因素方差分析

经典例题

某校高二年级共有四个班,采用四种不同的教学方法进行数学教学,为了比较这四种教学法的效果是否存在明显的差异,期末统考后,从这四个班中各抽取 5 名考生的成绩,如下所示。

班级

一班

二班

三班

四班

1

75

93

65

72

2

77

80

67

70

3

70

85

77

71

4

88

90

68

65

5

72

84

65

81

6

80

86

64

72

7

79

85

62

68

8

81

81

68

74

问这四种教学法的效果是否存在显著性差异(α =0.05)?

1.计算F值

import numpy as np
from scipy.stats import f_oneway# Data for the four classes
class1 = [75, 77, 70, 88, 72, 80, 79, 81]
class2 = [93, 80, 85, 90, 84, 86, 85, 81]
class3 = [65, 67, 77, 68, 65, 64, 62, 68]
class4 = [72, 70, 71, 65, 81, 72, 68, 74]# Perform one-way ANOVA
f_statistic, p_value = f_oneway(class1, class2, class3, class4)# Output the results
print("F-statistic:", f_statistic)
print("P-value:", p_value)# Interpret the results
alpha = 0.05
if p_value < alpha:print("There is a significant difference in the effectiveness of the teaching methods.")
else:print("There is no significant difference in the effectiveness of the teaching methods.")
F-statistic: 22.045992451864645
P-value: 1.5622062333927252e-07
There is a significant difference in the effectiveness of the teaching methods.

2.计算SS、df和F值

import numpy as np
import pandas as pd
from scipy.stats import f_oneway, f# Data for the four classes
class1 = [75, 77, 70, 88, 72, 80, 79, 81]
class2 = [93, 80, 85, 90, 84, 86, 85, 81]
class3 = [65, 67, 77, 68, 65, 64, 62, 68]
class4 = [72, 70, 71, 65, 81, 72, 68, 74]# Perform one-way ANOVA
f_statistic, p_value = f_oneway(class1, class2, class3, class4)# Degrees of freedom
num_groups = 4
num_samples = len(class1) + len(class2) + len(class3) + len(class4)
df_between = num_groups - 1
df_within = num_samples - num_groups# Calculate sum of squares (SS)
mean_total = np.mean([np.mean(class1), np.mean(class2), np.mean(class3), np.mean(class4)])
ss_total = np.sum((np.concatenate([class1, class2, class3, class4]) - mean_total) ** 2)
ss_between = np.sum([len(class1) * (np.mean(class1) - mean_total) ** 2,len(class2) * (np.mean(class2) - mean_total) ** 2,len(class3) * (np.mean(class3) - mean_total) ** 2,len(class4) * (np.mean(class4) - mean_total) ** 2])
ss_within = np.sum((class1 - np.mean(class1)) ** 2) + \np.sum((class2 - np.mean(class2)) ** 2) + \np.sum((class3 - np.mean(class3)) ** 2) + \np.sum((class4 - np.mean(class4)) ** 2)# Calculate mean squares (MS)
ms_between = ss_between / df_between
ms_within = ss_within / df_within# Calculate F-statistic
f_statistic_manual = ms_between / ms_within# Critical F-value
alpha = 0.05
f_crit = f.ppf(1 - alpha, df_between, df_within)# Create a DataFrame for better tabular representation
data = {'Class 1': class1,'Class 2': class2,'Class 3': class3,'Class 4': class4,
}df = pd.DataFrame(data)# Output the ANOVA results
print("Analysis of Variance (ANOVA):")
print("F-statistic (from scipy.stats):", f_statistic)
print("P-value (from scipy.stats):", p_value)
print("\nManual Calculation:")
print("SS Between:", ss_between)
print("SS Within:", ss_within)
print("DF Between:", df_between)
print("DF Within:", df_within)
print("MS Between:", ms_between)
print("MS Within:", ms_within)
print("F-statistic (manual calculation):", f_statistic_manual)
print("Critical F-value:", f_crit)# Interpret the results
if p_value < alpha:print("\nThere is a significant difference in the effectiveness of the teaching methods.")
else:print("\nThere is no significant difference in the effectiveness of the teaching methods.")
Manual Calculation:
SS Between: 1538.59375
SS Within: 651.375
DF Between: 3
DF Within: 28
MS Between: 512.8645833333334
MS Within: 23.263392857142858
F-statistic (manual calculation): 22.045992451864645
Critical F-value: 2.9466852660172655

相关文章:

scipy实现单因素方差分析

经典例题 某校高二年级共有四个班&#xff0c;采用四种不同的教学方法进行数学教学&#xff0c;为了比较这四种教学法的效果是否存在明显的差异&#xff0c;期末统考后&#xff0c;从这四个班中各抽取 5 名考生的成绩&#xff0c;如下所示。 班级 一班 二班 三班 四班 …...

深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通

大家好,我是微学AI,今天给大家介绍一下深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通。transformer是一种基于自注意力机制的深度学习模型,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它最初被设计用来处理序…...

一阶滤波器(一阶巴特沃斯滤波器)

连续传递函数G(s) 离散传递函数G(z) 转换为差分方程形式 一阶巴特沃斯滤波器Filter Designer参数设计&#xff1a;参考之前的博客Matlab的Filter Designer工具设计二阶低通滤波器 设计采样频率100Hz&#xff0c;截止频率20Hz。 注意&#xff1a;设计参数使用在离散系统中&…...

.net core中前端vue HTML5 History 刷新页面404问题

放到启动的应用程序的最后面 app.Run(async (context) > {context.Response.ContentType "text/html";await context.Response.SendFileAsync(Path.Combine(env.WebRootPath, "index.html")); });https://blog.csdn.net/lee576/article/details/88355…...

【152.乘积最大子数组】

目录 一、题目描述二、算法原理三、代码实现 一、题目描述 二、算法原理 三、代码实现 class Solution { public:int maxProduct(vector<int>& nums) {int nnums.size();vector<int> f(n);vector<int> g(n);f[0]g[0]nums[0];int retnums[0];for(int i1;…...

如何开发OA系统场景的系统架构

1.开发OA系统场景的系统架构 针对开发OA系统的场景&#xff0c;以下是一个简单的系统架构示例&#xff0c;包括前端、后端和数据库三个基本部分&#xff1a; 前端&#xff1a; 使用React框架进行前端开发&#xff0c;构建用户界面和交互逻辑。前端模块包括日程管理模块、文档管…...

spring boot 集成 RedisSearch 和 RedisJSON

1. 准备工作 环境说明 java 8&#xff1b;redis7.2.2&#xff0c;redis集成RedisSearch、redisJson 模块&#xff1b;spring boot 2.5在执行 redis 命令&#xff0c; 或者监控 程序执行的redis 指令时&#xff0c;可以采用 redisinsight查看&#xff0c;下载地址。 背景说明 需…...

【Kotlin精简】第8章 协程

1 简介 Kotlin 中的协程提供了一种全新处理并发的方式&#xff0c;您可以在 Android 平台上使用它来简化异步执行的代码。协程是从 Kotlin 1.3 版本开始引入&#xff0c;但这一概念在编程世界诞生的黎明之际就有了&#xff0c;最早使用协程的编程语言可以追溯到 1967 年的 Sim…...

【MATLAB源码-第79期】基于蚯蚓优化算法(EOA)的栅格路径规划,输出做短路径图和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 蚯蚓优化算法&#xff08;Earthworm Optimisation Algorithm, EOA&#xff09;是一种启发式算法&#xff0c;灵感来源于蚯蚓在自然界中的行为模式。蚯蚓优化算法主要模仿了蚯蚓在寻找食物和逃避天敌时的行为策略。以下是蚯蚓…...

RPC实现简单解析

RPC是什么&#xff0c;先摘取一段解释&#xff1a; RPC全称为远程过程调用&#xff08;Remote Procedure Call&#xff09;&#xff0c;它是一种计算机通信协议&#xff0c;允许一个计算机程序调用另一个计算机上的子程序&#xff0c;而无需了解底层网络细节。通过RPC&#xff…...

【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr

【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr 文章目录 【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr1. 安装视频播放器vlc2. 安装录屏软件ssr 1. 安装视频播放器vlc sudo apt-get install vlcvlc是一款比较简洁的视频播放器&#xff0c;如下所示 2. 安…...

WMS仓储管理系统与TMS系统整合后的优势

随着全球化的加速和供应链网络的日益复杂&#xff0c;仓库和运输成为企业运营中的两个关键环节。为了更高效地管理这两个环节&#xff0c;许多企业开始探索将WMS仓储管理系统和TMS运输管理系统整合的可能性。这种整合不仅可以提升仓库流程的可见性&#xff0c;还有助于改善调度…...

测试的专用

测试...

sqli-labs(Less-4) extractvalue闯关

extractvalue() - Xpath类型函数 1. 确认注入点如何闭合的方式 2. 爆出当前数据库的库名 http://127.0.0.1/sqlilabs/Less-4/?id1") and extractvalue(1,concat(~,(select database()))) --3. 爆出当前数据库的表名 http://127.0.0.1/sqlilabs/Less-4/?id1") …...

Kafka简单汇总

Kafka的结构图 多个Parttion共同组成这个topic的所有消息。每个consumer都属于一个consumer group&#xff0c;每条消息只能被consumer group中的一个Consumer消费&#xff0c; 但可以被多个consumer group消费。即组间数据是共享的&#xff0c;组内数据是竞争的。二、消费模型…...

任务交给谁?委派模式告诉你最佳选择!

文章目录 一、概念二、角色三、代码实现四、委派模式在源码中的体现五、委派模式的优缺点优点缺点 一、概念 委派模式&#xff08;Delegate Pattern)又叫委托模式&#xff0c;是一种面向对象的设计模式。委派模式是一种行为模式&#xff0c;不属于GOF23种设计模式之中基本作用…...

【JavaEE】Servlet(创建Maven、引入依赖、创建目录、编写及打包、部署和验证、smart Tomcat)

一、什么是Servlet&#xff1f; Servlet 是一种实现动态页面的技术. 是一组 Tomcat 提供给程序猿的 API, 帮助程序猿简单高效的开发一个 web app 1.1 Servlet能干什么&#xff1f; &#x1f695;允许程序猿注册一个类, 在 Tomcat 收到某个特定的 HTTP 请求的时候, 执行这个类…...

降低城市内涝风险,万宾科技内涝积水监测仪的作用

频繁的内涝会削弱和损坏城市的关键基础设施&#xff0c;包括道路、桥梁和公用设施。城市内涝风险降低可以减少交通中断事件&#xff0c;也可以保护居民安全并降低路面维修等成本&#xff0c;进一步确保城市基本服务继续发挥作用。对城市可持续发展来讲有效减少内涝的风险是重要…...

水库大坝安全监测预警系统的重要作用

水库大坝建造在地质构造复杂、岩土特性不均匀的地基上&#xff0c;在各种荷载的作用和自然因素的影响下&#xff0c;其工作性态和安全状况随时都在变化。如果出现异常&#xff0c;又不被及时发现&#xff0c;其后果不堪设想。全天候实时监测&#xff0c;实时掌握水库水位、雨情…...

【AI视野·今日NLP 自然语言处理论文速览 第六十五期】Mon, 30 Oct 2023

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 30 Oct 2023 Totally 67 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers An Approach to Automatically generating Riddles aiding Concept Attainment Authors Niharika Sri Parasa,…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...