当前位置: 首页 > news >正文

CV学习笔记-ResNet

ResNet

文章目录

  • ResNet
    • 1. ResNet概述
      • 1.1 常见卷积神经网络
      • 1.2 ResNet提出背景
    • 2. ResNet网络结构
      • 2.1 Residual net
      • 2.2 残差神经单元
      • 2.3 Shortcut
      • 2.4 ResNet50网络结构
    • 3. 代码实现
      • 3.1 Identity Block
      • 3.2 Conv Block
      • 3.3 ResNet网络定义
      • 3.4 整体代码测试

1. ResNet概述

1.1 常见卷积神经网络

在这里插入图片描述

卷积神经网络的发展历史如上所示,在AlexNet进入大众的视野之后,卷积神经网络的作用与实用性得到了广泛的认可,由此,对于卷积神经网络的优化进入了快速发展的阶段,经典的里程碑式的优化思想大致归为四大类:

  • 网络加深

表现为在卷积神经网络的网络结构方面,在网络结构上增加卷积激活层,使得网络结构越变越深,深层次的网络在训练学习的过程中所考虑的因素就会更多,理论上会更加准确,但是网络的深度要与实际问题相关,在实践中折衷选取,过深过浅都不利于问题的解决。

  • 增强卷积模块功能

表现为在一个卷积块中对特征提取的方式做出改变(也即变更传统卷积层的结构以获取更多的滤波作用),一般处于对feature map的尺度以及优化计算量的考量。

  • 从分类的目标到检测的目标

同样利用CNN,但是设计网络的目标从分类的任务变更为了检测任务,检测任务不仅需要对图片中的区域进行特征提取、对结果进行分类,还要通过相关性的信息将目标框框出。

  • 增加新的功能单元

丰富网络处理某一层输入或者输出的功能,此处的功能单元指传统卷积(Conv)、激活以及全连接、分类器之外的新增功能模块,例如LSTM增加的遗忘门,能够考虑历史数据,增加神经网络的功能。

1.2 ResNet提出背景

在ResNet提出之前,卷积神经网络的优化方式往往是通过加深网络的深度,堆叠基本单元,卷积层与池化层越堆积越多,科研工作者们在加深网络深度从而提高网络效果的情况愈演愈烈,学术界普遍认为,卷积层与池化层越多,提取到的图像特征信息越全面,对于分类的拟合度越高,但是随着网络的加深,问题也逐渐暴露出来了:

  • 梯度弥散以及梯度爆炸

    若每一层的误差梯度小于1,对于深度较深的网络反向转播时会使梯度趋近于0,反而会使得训练的过程难以有效继续。

    若每一层的误差梯度大于1,对于深度较深的网络反向传播时会使梯度越来越大,直到“爆炸”(数值极大)

  • 结果退化问题

    当网络结构深到一定程度之后,对于分类问题的预测差距反而不符合期望,变得越来越差

本文介绍的ResNet卷积神经网络摒弃了一味堆叠卷积层和池化层的方法,并巧妙解决了梯度弥散和梯度爆炸的问题以及结果退化的问题。

2. ResNet网络结构

2.1 Residual net

Residual net(残差网络)

在这里插入图片描述

通过上图通俗解释,残差网络即是将前若干层的某一层数据输出直接跳过多层处理模块,直接引入到后面数据层的输入部分。

64维的数据输入到网络之后,一方面经过了卷积层的处理,另一方面跳过了卷积层从而直接与处理过的数据“会和”,这样,经过卷积层处理的数据相当于提取了特征,但是提取特征必然会造成信息的丢失,而未经处理的部分却保留了原始信息,这样做既能够考虑到特征提取不够的问题,又能考虑保留feature map的原始信息。

Residual有两种类型

  • 左图残差结构称为BasicBlock
  • 右图残差结构称为Bottleneck

在这里插入图片描述

2.2 残差神经单元

假定某段神经网络的输入是x,期望输出是H(x),如果我们直接将输入x传到输出作
为初始结果,那么我们需要学习的目标就是F(x) = H(x) - x,这就是一个残差神经单元,相当于将学习目标改变了,不再是学习一个完整的输出H(x),只是输出和输入的差别 H(x) - x ,即残差。

2.3 Shortcut

普通的直连的卷积神经网络和ResNet的最大区别在于,ResNet有很多旁路的支线将输入直接连到后面的层,使得后面的层可以直接学习残差,这种结构也被称为shortcutskip connections

在这里插入图片描述

传统的卷积层或全连接层在信息传递时,或多或少会存在信息丢失、损耗等问题。ResNet在某种程度上解决了这个问题,通过直接将输入信息绕道传到输出,保护信息的完整性,整个网络只需要学习输入、输出差别的那一部分,简化了学习目标和难度。

2.4 ResNet50网络结构

ResNet50有两个基本的块,分别名为Conv BlockIdentity Block,其中Conv Block输入和输出的维度是不一样的,因为其直接输出一面也采用了一个卷积和一个归一化的BN层,所以不能连续串联,它的作用是改变网络的维度;Identity Block输入维度和输出维度相同,可以串联,用于加深网络的。

由于输出预处理和BN层的引入,解决了梯度弥散和梯度爆炸的问题。

BN层为Batch Normalization层,此部分的作用在笔者《CV学习笔记-Inception》中已经详细介绍,此处不再赘述。

由于神经网络的某些层跳过了下一层神经元的连接,隔层相连,这样弱化了每层之间的强联系,Residual结构缓解了退化的问题。

Conv Block结构

在这里插入图片描述

Identity Block结构

在这里插入图片描述

ResNet的网络结构:

ResNet的网络结构大部分由上面介绍的Conv Block和Identity Block组合构成,在网络的最后接上了平均池化与全连接层,最终输出分类。

在这里插入图片描述

3. 代码实现

3.1 Identity Block

Identity Block的定义实现,完全根据上图中Identity Block的结构定义构造,结构中最经典的就是Conv+BN+Relu的组合拳。

def identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)x = BatchNormalization(name=bn_name_base + '2a')(x)x = Activation('relu')(x)x = Conv2D(filters2, kernel_size,padding='same', name=conv_name_base + '2b')(x)x = BatchNormalization(name=bn_name_base + '2b')(x)x = Activation('relu')(x)x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)x = BatchNormalization(name=bn_name_base + '2c')(x)x = layers.add([x, input_tensor])x = Activation('relu')(x)return x

3.2 Conv Block

Conv Block的定义实现,完全根据上图中Conv Block的结构定义构造,结构中最经典的就是Conv+BN+Relu的组合拳。注意,Conv Block在shortcut的部分多了Conv+BN的操作,此处与Identity Block不同,故shortcut = Conv2D()shortcut = BatchNormalization(),在shortcut处理之后,x = layers.add([x, shortcut]),对shortcut部分和左边的卷积处理部分进行了整合(加法)。

def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'x = Conv2D(filters1, (1, 1), strides=strides,name=conv_name_base + '2a')(input_tensor)x = BatchNormalization(name=bn_name_base + '2a')(x)x = Activation('relu')(x)x = Conv2D(filters2, kernel_size, padding='same',name=conv_name_base + '2b')(x)x = BatchNormalization(name=bn_name_base + '2b')(x)x = Activation('relu')(x)x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)x = BatchNormalization(name=bn_name_base + '2c')(x)shortcut = Conv2D(filters3, (1, 1), strides=strides,name=conv_name_base + '1')(input_tensor)shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut)x = layers.add([x, shortcut])x = Activation('relu')(x)return x

3.3 ResNet网络定义

def ResNet50(input_shape=[224,224,3],classes=1000):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x = Flatten()(x)x = Dense(classes, activation='softmax', name='fc1000')(x)model = Model(img_input, x, name='resnet50')model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")return model

3.4 整体代码测试

本主程序使用ResNet50加载模型对美洲象的图片进行了预测输出:

在这里插入图片描述

#-------------------------------------------------------------#
#   ResNet50的网络部分
#-------------------------------------------------------------#
from __future__ import print_functionimport numpy as np
from keras import layersfrom keras.layers import Input
from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from keras.layers import Activation,BatchNormalization,Flatten
from keras.models import Model# from keras.preprocessing import image
from keras.utils import image_utils as image
import keras.backend as K
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import decode_predictions
from keras.applications.imagenet_utils import preprocess_inputdef identity_block(input_tensor, kernel_size, filters, stage, block):filters1, filters2, filters3 = filtersconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)x = BatchNormalization(name=bn_name_base + '2a')(x)x = Activation('relu')(x)x = Conv2D(filters2, kernel_size,padding='same', name=conv_name_base + '2b')(x)x = BatchNormalization(name=bn_name_base + '2b')(x)x = Activation('relu')(x)x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)x = BatchNormalization(name=bn_name_base + '2c')(x)x = layers.add([x, input_tensor])x = Activation('relu')(x)return xdef conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):filters1, filters2, filters3 = filtersconv_name_base = 'res' + str(stage) + block + '_branch'bn_name_base = 'bn' + str(stage) + block + '_branch'x = Conv2D(filters1, (1, 1), strides=strides,name=conv_name_base + '2a')(input_tensor)x = BatchNormalization(name=bn_name_base + '2a')(x)x = Activation('relu')(x)x = Conv2D(filters2, kernel_size, padding='same',name=conv_name_base + '2b')(x)x = BatchNormalization(name=bn_name_base + '2b')(x)x = Activation('relu')(x)x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)x = BatchNormalization(name=bn_name_base + '2c')(x)shortcut = Conv2D(filters3, (1, 1), strides=strides,name=conv_name_base + '1')(input_tensor)shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut)x = layers.add([x, shortcut])x = Activation('relu')(x)return xdef ResNet50(input_shape=[224,224,3],classes=1000):img_input = Input(shape=input_shape)x = ZeroPadding2D((3, 3))(img_input)x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)x = BatchNormalization(name='bn_conv1')(x)x = Activation('relu')(x)x = MaxPooling2D((3, 3), strides=(2, 2))(x)x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')x = AveragePooling2D((7, 7), name='avg_pool')(x)x = Flatten()(x)x = Dense(classes, activation='softmax', name='fc1000')(x)model = Model(img_input, x, name='resnet50')model.load_weights("resnet50_weights_tf_dim_ordering_tf_kernels.h5")return modelif __name__ == '__main__':model = ResNet50()model.summary()img_path = 'elephant.jpg'# img_path = 'bike.jpg'img = image.load_img(img_path, target_size=(224, 224))x = image.img_to_array(img)x = np.expand_dims(x, axis=0)x = preprocess_input(x)print('Input image shape:', x.shape)preds = model.predict(x)print('Predicted:', decode_predictions(preds))

测试结果:

在这里插入图片描述

相关文章:

CV学习笔记-ResNet

ResNet 文章目录ResNet1. ResNet概述1.1 常见卷积神经网络1.2 ResNet提出背景2. ResNet网络结构2.1 Residual net2.2 残差神经单元2.3 Shortcut2.4 ResNet50网络结构3. 代码实现3.1 Identity Block3.2 Conv Block3.3 ResNet网络定义3.4 整体代码测试1. ResNet概述 1.1 常见卷积…...

百亿数据,毫秒级返回查询优化

近年来公司业务迅猛发展,数据量爆炸式增长,随之而来的的是海量数据查询等带来的挑战,我们需要数据量在十亿,甚至百亿级别的规模时依然能以秒级甚至毫秒级的速度返回,这样的话显然离不开搜索引擎的帮助,在搜…...

cpp之STL

STL原理 STL ⼀共提供六⼤组件,包括容器,算法,迭代器,仿函数,适配器和空间配置器,彼此可以组合套⽤。容器通过配置器取得数据存储空间,算法通过迭代器存取容器内容,仿函数可以协助算…...

基于Spring Boot开发的资产管理系统

文章目录 项目介绍主要功能截图:登录首页信息软件管理服务器管理网络设备固定资产明细硬件管理部分代码展示设计总结项目获取方式🍅 作者主页:Java韩立 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目…...

Markdown总结

文字的着重标记与段落的层次划分 Tab键可以缩进列表; shift Tab:取消缩进列表 加粗(****)、斜体(**)高亮:xxx$$:特殊标记删除:~~xxx~~多级标题:######无序列…...

字节跳动软件测试岗4轮面经(已拿34K+ offer)...

没有绝对的天才,只有持续不断的付出。对于我们每一个平凡人来说,改变命运只能依靠努力幸运,但如果你不够幸运,那就只能拉高努力的占比。 2021年10月,我有幸成为了字节跳动的一名测试工程师,从外包辞职了历…...

docker - 搭建redis集群和Etcd

概述 由于业务需要,需要把之前的分布式架构调整成微服务,把老项目迁移到k8s的服务中,再开始编码之前,需要再本地环境里做相应的准备工作,使用docker搭建redis集群,Etcd主要是注册本地的rpc服务。 Liunx O…...

Java程序开发中如何使用lntelliJ IDEA?

完成了IDEA的安装与启动,下面使用IDEA创建一个Java程序,实现在控制台上打印HelloWorld!的功能,具体步骤如下。 1.创建Java项目 进入New Project界面后,单击New Project选项按钮创建新项目,弹出New Project对话框&…...

【Linux】理解进程地址空间

🍎作者:阿润菜菜 📖专栏:Linux系统编程 ​我们在学习C语言的时候,都学过内存区域的划分如栈、堆、代码区、数据区这些。但我们其实并不真正理解内存 — 我们之前一直说的内存是物理上的内存吗? 前言 我们…...

Unity脚本 --- 常用API(类)--- GameObject类 和

第一部分 --- GameObject类 1.在Hierarchy 层级面板中添加游戏物体其实就相当于在场景中添加游戏物体 2.每一个场景都有一个自己的Hierarchy层级面板,用来管理场景中的所有游戏物体 3.是的,我们可以创建多个场景 1.首先上面这两个变量都是布尔变量&am…...

HTML标签——表格标签

HTML标签——表格标签 目录HTML标签——表格标签一、表格标题和表头单元格标签场景:注意点:案例实操小结二、表格的结构标签场景:注意点:案例实操:三、合并单元格思路场景:代码实现一、表格标题和表头单元格…...

Telerik JustMock 2023 R1 Crack

Telerik JustMock 2023 R1 Crack 制作单元测试的最快、最灵活和模拟选项。 Telerik JustLock也很简单,可以使用一个模拟工具来帮助您更快地生成更好的单元测试。JustLock使您更容易创建对象并建立对依赖关系的期望,例如,互联网服务需求、数据…...

筑基八层 —— 问题思考分析并解决

目录 零:移步 一.修炼必备 二.问题思考(先思考) 三.问题解答 零:移步 CSDN由于我的排版不怎么好看,我的有道云笔记相当的美观,请移步有道云笔记 一.修炼必备 1.入门必备:VS2019社区版&#x…...

【面试题】当面试官问 Vue2与Vue3的区别,你该怎么回答?

大厂面试题分享 面试题库后端面试题库 (面试必备) 推荐:★★★★★地址:前端面试题库被问到 《vue2 与 vue3 的区别》应该怎么回答Vue 内部根据功能可以被分为三个大的模块:响应性 reactivite、运行时 runtime、编辑器…...

使用Python对excel中的数据进行处理

一、读取excel中的数据首先引入pandas库,没有的话使用控制台安装 —— pip install pandas 。import pandas as pd #引入pandas库,别名为pd#read_excel用于读取excel中的数据,这里只列举常用的两个参数(文件所在路径&#xff…...

TCP协议原理三

文章目录七、延时应答八、捎带应答九、面向字节流粘包问题十、TCP异常情况总结七、延时应答 如果说滑动窗口的关键是让窗口大一些,传输速度就快一些。那么延时应答就是在接收方能够处理的前提下,尽可能把ack返回的窗口大小尽可能大一些。 如果在接受数据…...

mac在命令行里获取root权限

1、为什么要获取root权限? 答:一些命令在正常状态下没有权限会报错,只有获取了root权限才能正常操作。 比如我们想修改一些系统的文件: vim /etc/shells 1 修改后保存,发现没权限,报错了。如下图&#xf…...

文献阅读 Improving Seismic Data Resolution with Deep Generative Networks

题目 Improving Seismic Data Resolution with Deep Generative Networks 使用深度生成网络提高地震数据分辨率 摘要 叠前数据的使用,通常可以来解决噪声迹线、覆盖间隙或不规则/不适当的迹线间距等问题。但叠前数据并不总是可用的。作为替代方案,叠后…...

mysql数据库之子查询练习

1、查询员工的姓名、年龄、职位、部门信息(隐式内连接)。 #emp、dept #连接条件:emp.dept_iddept.id select e.name,e.age,e.job,d.name from emp e,dept d where e.dept_idd.id; 2、查询年龄小于30岁的员工姓名、年龄、职位、部…...

西电计算机通信与网络(计网)简答题计算题核心考点汇总(期末真题+核心考点)

文章目录前言一、简答计算题真题概览二、网桥,交换机和路由器三、ARQ协议四、曼彻斯特编码和差分曼彻斯特编码五、CRC六、ARP协议七、LAN相关协议计算前言 主要针对西安电子科技大学《计算机通信与网络》的核心考点进行汇总,包含总共26章的核心简答。 【…...

【博学谷学习记录】超强总结,用心分享丨人工智能 Python基础 个人学习总结之列表排序

目录前言简述list.sort()语法返回值实例无参参数key参数reversesorted()语法返回值实例无参参数key参数reverseoperator.itemgetter功能简述实例List.sort与sored区别sorted原理:Timsort算法扩展list原理数据结构心得前言 经过一周的学习,对Python基础部…...

深度讲解React Props

一、props的介绍 当React遇到的元素是用户自定义的组件&#xff0c;它会将JSX属性作为单个对象传递给该组件&#xff0c;这个对象称之为“props”。 函数声明的组件&#xff0c;会接受一个props形参&#xff0c;获取属性传递的参数 function ComponentA(props) { return <…...

WebRTC现状以及多人视频通话分析

1.WebRTC 概述WebRTC&#xff08;网页实时通信技术&#xff09;是一系列为了建立端到端文本或者随机数据的规范&#xff0c;标准&#xff0c;API和概念的统称。这些对等端通常是由两个浏览器组成&#xff0c;但是WebRTC也可以被用于在客户端和服务器之间建立通信连接&#xff0…...

【Windows】Windows下wget的安装与环境变量配置

1 wget安装 GNU Wget常用于使用命令行下载网络资源&#xff08;包括但不限于文件、网页等&#xff09;。 GNU Wget官网&#xff1a;GNU Wget GNU Wget for Windows&#xff1a;GNU Wget for Windows 安装时首先下载主安装包&#xff1a;Complete package, except sources&…...

密码学基础概念

把一段原始数据通过某种算法处理成另外一种数据&#xff08;原始数据为明文&#xff0c;处理后的数据为密文&#xff09;。明文->密文&#xff1a;称之为加密。密文->明文&#xff1a;称之为解密。 在加密过程中我们需要知道下面的这些概念&#xff1a; 1&#xff09;明文…...

科技巨头争相入局,卫星通信领域将迎来怎样的发展?

近年来&#xff0c;全球卫星通信产业进入了一个高速发展的阶段 与卫星通信相关的新技术和新应用不断出现&#xff0c;成为了媒体报道的热点&#xff0c;也引起了公众的广泛关注。 尤其是刚刚过去的2022年&#xff0c;华为和苹果公司分别发布了搭载卫星通信技术的手机&#xf…...

银行软件测试面试题目总结,希望可以帮到你

目录 一、根据题目要求写出具体LINUX操作命令 二、JMETER题目 三、根据题目要求写出具体SQL语句 总结感谢每一个认真阅读我文章的人&#xff01;&#xff01;&#xff01; 重点&#xff1a;配套学习资料和视频教学 一、根据题目要求写出具体LINUX操作命令 1、分别写出一种…...

MySQL数据定义

系列文章目录前言创建数据库删除数据库修改数据库修改表结构修改表中列修改表中约束创建表删除表前言 创建数据库 创建数据库CREATE DATABASE 数据库名 使用数据库use 数据库名; MySQL数据库如何建表 删除数据库 删除数据库语句DROP DATABASE 数据库名 这条语句会删除数据…...

跨设备文件传输工具横评

文章目录对比QQ微信SnapDropLocalSendIntelUnisonLANDropTailscaleAirDroidSendAnywhere参考文献对比 传输速度测试条件大致相同&#xff0c;文件大小约为 100 MB 工具优点缺点传输速度备注QQ支持断点续传不要求同一局域网需要安装1.81 MB/s微信方便需要安装不支持大文件传完还…...

Oracle通过SQL找出ID不连续的位置

文章目录1 前言2 SQL3 结语1 前言 工作中要求我找到 ID 不连续的地方, 然后拿这个 ID , 给数据库里面 INSERT 一条数据. 比如: ID备注… 省略连续的部分232425就是想找到这里断开的地方, 下一个可以 INSERT 的 ID 就是 2674915751157512075122… 省略连续的部分 2 SQL 假设数据…...

中国互联网百强企业名单/秦皇岛网站seo

win10重装系统提示缺少介质显示缺少介质解决方法有位伙伴购买了新电脑&#xff0c;因电脑中没有系统&#xff0c;所以用U盘给电脑重装win10&#xff0c;发现弹出“缺少计算机所需的介质驱动程序”的窗口&#xff0c;尝试过更换USB接口&#xff0c;但还是失败&#xff0c;这是怎…...

众筹网站建设公司/企业网站设计公司

本文来自于网易公开课 1 什么是深度神经网络&#xff1f; 深度神经网络只不过是多隐层的神经网络&#xff0c;深度和浅层只不过是衡量隐层数的多少。在处理任何具体的问题时&#xff0c;预先准确的判断需要多深的神经网络很难&#xff0c;所以先试试看logistic回归是很合理的…...

网站开发合同 中英文/网站收录查询平台

新建数据库连接类MysqlDatabase.class.php1,数据库连接需要用到的属性<?php /*** Created by PhpStorm.* User: Administrator* Date: 2018/3/3 0003* Time: 下午 2:57*/class MysqlDatabase{//数据库连接信息private $dbConfigarray(host>localhost,port>3306,user&…...

mvc做网站前台代码/最近新闻今日头条

nodejs获取表单数据的方法 nodejs作为服务端语言&#xff0c;在开发中注册登录等需通过form表单向后端发送数据进行判断&#xff0c;那作为服务端语言的nodejs通过哪些方法可以接收调用form表单的post请求值呢。 常见的会用到以下三种&#xff0c;让我们对着例子看看具体用法。…...

在线男人和女人做那件事网站/精准营销包括哪几个方面

Check Point提醒苹果iOS的核心应用程序可能会暴露用户的凭据。所幸的是iOS 9包含有相关的补丁。 Apple ID ios操作系统专门为用户提供了方便以便用户自己通过一个Apple ID来管理设备。现如今iOS的市场份额占当前移动设备行业的40&#xff05;以上&#xff0c;Apple ID与用户的所…...

做外贸网站价格/网站友情链接连接

16进制字符串与字节数组进行转换 package string;import java.util.Arrays;/*** byte[]与16进制字符串相互转换* * date&#xff1a;2017年4月10日 下午11:04:27 */ public class BytesHexStrTranslate {private static final char[] HEX_CHAR {0, 1, 2, 3, 4, 5, 6, 7, 8,…...