当前位置: 首页 > news >正文

【Pytorch笔记】7.torch.nn (Convolution Layers)

我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。

先从最简单的,都有哪些层开始学起。

Convolution Layers - 卷积层

torch.nn.Conv1d()

1维卷积层。

torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

in_channels:输入tensor的通道数;
out_channels:输出tensor的通道数;
kernel_size:卷积核的大小;
stride:步长;
padding:输入tensor的边界填充尺寸;
dilation:卷积核之间的间距(下面这个图为dilation=2),默认为1;
在这里插入图片描述

groups:从输入通道到输出通道的阻塞连接数。in_channelout_channel需要能被groups整除。更具体地:
groups=1时所有输入均与所有输出进行卷积,groups=2时该操作相当于并排设置两个卷积层,每卷积层看到一半的输入通道,产生一半的输出通道,然后将两个卷积层连接起来。groups=in_channel时输入的每个通道都和相应的卷积核进行卷积;
bias:是否添加可学习的偏差值,True为添加,False为不添加。
padding_mode:填充模式,有以下取值:zeros(这个是默认值)、reflectreplicatecircular

import torch
import torch.nn as nnm = nn.Conv1d(in_channels=16,out_channels=33,kernel_size=3,stride=2)
# input: 批大小为20,每个数据通道为16,size=50
input = torch.randn(20, 16, 50)
output = m(input)
print(output.size())

输出

# output: 批大小为20,每个数据通道为33,size=24
torch.Size([20, 33, 24])

torch.nn.Conv2d()

2维卷积层。

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.Conv2d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 5, 6)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 2, 2])

torch.nn.Conv3d()

3维卷积层。

torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.Conv3d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 4, 5, 6)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 1, 2, 2])

torch.nn.ConvTranspose1d()

1维转置卷积层。

torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。
唯一不同的是output_padding,与padding不同的是,output_padding是输出tensor的每一个边,外面填充的层数。
padding是输入tensor的每个边填充的层数)

import torch
import torch.nn as nnm = nn.ConvTranspose1d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4])

torch.nn.ConvTranspose2d()

2维转置卷积层。

torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.ConvTranspose2d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4, 4])

torch.nn.ConvTranspose3d()

3维转置卷积层。

torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

参数与Conv1d()基本一样,不再赘述。

import torch
import torch.nn as nnm = nn.ConvTranspose3d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2, 2)
output = m(input)
print(output.size())

输出

torch.Size([20, 3, 4, 4, 4])

torch.nn.LazyConv1d()

1维延迟初始化卷积层,当in_channel不确定时可使用这个层。
关于延迟初始化,大家可以参考这篇文章,我认为讲的很好:
俱往矣… - 延迟初始化——【torch学习笔记】

torch.nn.LazyConv1d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

LazyConv1d没有in_channel参数
这不代表这个层没有输入的通道,而是在调用时自动适配,并进行初始化。
引用文章中的一段代码,改成LazyConv1d,讲述使用方法。

import torch
import torch.nn as nnnet = nn.Sequential(nn.LazyConv1d(256, 2),nn.ReLU(),nn.Linear(9, 10)
)
print(net)
[net[i].state_dict() for i in range(len(net))]low = torch.finfo(torch.float32).min / 10
high = torch.finfo(torch.float32).max / 10
X = torch.zeros([2, 20, 10], dtype=torch.float32).uniform_(low, high)
net(X)
print(net)

输出

Sequential((0): LazyConv1d(0, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)
Sequential((0): Conv1d(20, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)

可以看出,未进行初始化时,in_features=0。只有传入参数使用网络后才会根据输入进行初始化。

torch.nn.LazyConv2d()

2维延迟初始化卷积层。

torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConv3d()

3维延迟初始化卷积层。

torch.nn.LazyConv3d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose1d()

1维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose1d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose2d()

2维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose2d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.LazyConvTranspose3d()

3维延迟初始化转置卷积层。

torch.nn.LazyConvTranspose3d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)

torch.nn.Unfold()

从一个批次的输入张量中提取出滑动的局部区域块。

torch.nn.Unfold(kernel_size, dilation=1, padding=0, stride=1)

kernel_size:滑动块的大小;
dilation:卷积核之间的间距(torch.nn.Conv1d中有图示);
padding:输入tensor的边界填充尺寸;
stride:滑块滑动的步长。

这里的输入必须是4维的tensor,否则会报这样的错误:

NotImplementedError: Input Error: Only 4D input Tensors are supported (got 2D)

示例

import torch
from torch import nnt = torch.tensor([[[[1.,  2.,  3.,  4.],[5.,  6.,  7.,  8.],[9.,  10., 11., 12.],[13., 14., 15., 16.],]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)

输出

tensor([[[ 1.,  2.,  3.,  5.,  6.,  7.,  9., 10., 11.],[ 2.,  3.,  4.,  6.,  7.,  8., 10., 11., 12.],[ 5.,  6.,  7.,  9., 10., 11., 13., 14., 15.],[ 6.,  7.,  8., 10., 11., 12., 14., 15., 16.]]])

在这里插入图片描述

torch.nn.Fold()

Unfold()的逆操作。当Unfold()时出现滑块有重复覆盖时会导致结果和原来不一样。因为Fold()的过程中对于同一个位置的元素进行加法处理。

torch.nn.Fold(output_size, kernel_size, dilation=1, padding=0, stride=1)

下面是Unfold()和Fold()结合的代码,Unfold()部分和上面代码相同。

import torch
from torch import nnt = torch.tensor([[[[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.],[13., 14., 15., 16.]]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)
fold = nn.Fold(output_size=(4, 4), kernel_size=(2, 2))
out = fold(output)
print(out)

输出

tensor([[[ 1.,  2.,  3.,  5.,  6.,  7.,  9., 10., 11.],[ 2.,  3.,  4.,  6.,  7.,  8., 10., 11., 12.],[ 5.,  6.,  7.,  9., 10., 11., 13., 14., 15.],[ 6.,  7.,  8., 10., 11., 12., 14., 15., 16.]]])
tensor([[[[ 1.,  4.,  6.,  4.],[10., 24., 28., 16.],[18., 40., 44., 24.],[13., 28., 30., 16.]]]])

相关文章:

【Pytorch笔记】7.torch.nn (Convolution Layers)

我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…...

MySQL内部组件与日志详解

MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等)&am…...

【LeetCode】94. 二叉树的中序遍历

94. 二叉树的中序遍历 难度:简单 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[1,3,2]示例 2: 输入:root [] 输出:[]示…...

IP-guard WebServer 命令执行漏洞复现

简介 IP-guard是一款终端安全管理软件,旨在帮助企业保护终端设备安全、数据安全、管理网络使用和简化IT系统管理。在旧版本申请审批的文件预览功能用到了一个开源的插件 flexpaper,使用的这个插件版本存在远程命令执行漏洞,攻击者可利用该漏…...

TensorFlow案例学习:图片风格迁移

准备 官方教程: 任意风格的快速风格转换 模型下载地址: https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2 学习 加载要处理的内容图片和风格图片 # 用于将图像裁剪为方形def crop_center(image):# 图片原始形状shape image…...

解密网络世界的秘密——Wireshark Mac/Win中文版网络抓包工具

在当今数字化时代,网络已经成为了人们生活和工作中不可或缺的一部分。然而,对于网络安全和性能的监控和分析却是一项重要而又复杂的任务。为了帮助用户更好地理解和解决网络中的问题,Wireshark作为一款强大的网络抓包工具,应运而生…...

自学ansible笔记

一、认识ansible Ansible是一款开源自动化运维工具。它有如下特点: 1、不需要安装客户端,通过sshd去通信,比较轻量化; 2、基于模块工作,模块可以由任何语言开发,比较自由和开放; 3、不仅支持命…...

笔记53:torch.nn.rnn() 函数详解

参数解释: (1)input_size():即输入信息 Xt 的每个序列的独热编码向量的长度,即 len(vocab) (2)hidden_size():即隐变量 h 的维度(维度是多少,就代表用几个数…...

【Spring】使用三方包进行数据源对象(数据库)管理

在这里使用alibaba的druid来连接数据库&#xff0c;然后再Spring Config下配置数据库 目录 第一步&#xff1a;在pom.xml中导入坐标第二步&#xff1a;在bean中配置连接注 第一步&#xff1a;在pom.xml中导入坐标 在dependencies下写&#xff1a; <dependency><grou…...

EfficientNet:通过模型效率彻底改变深度学习

一、介绍 EfficientNet 是深度学习领域的里程碑&#xff0c;代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发&#xff0c;在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后…...

asp.net core mvc之 布局

一、布局是什么&#xff1f; 布局是把每个页面的公共部分&#xff0c;提取成一个布局页面&#xff08;头、导航、页脚&#xff09;。 二、默认布局 _Layout.cshtml 默认的布局是在 /Views/Shared 目录的 _Layout.cshtml文件。通常Shared目录中的视图都是公共视图。该目录下的…...

【QT HTTP】使用QtNetwork模块制作基于HTTP请求的C/S架构

目录 0 引言1 HTTP基本知识1.1 请求类型1.2 HTTP请求报文格式1.3 HTTP响应报文格式1.4 拓展&#xff1a;GET vs POST 请求方法GET请求请求报文&#xff1a;响应报文 POST请求请求报文响应报文 其他注意事项示例&#xff1a;GET请求示例POST请求示例 2 实战2.1 QtNetwork模块介绍…...

R语言绘制精美图形 | 火山图 | 学习笔记

一边学习&#xff0c;一边总结&#xff0c;一边分享&#xff01; 教程图形 前言 最近的事情较多&#xff0c;教程更新实在是跟不上&#xff0c;主要原因是自己没有太多时间来学习和整理相关的内容。一般在下半年基本都是非常忙&#xff0c;所有一个人的精力和时间有限&#x…...

远程创建分支本地VScode看不到分支

在代码存放处右击&#xff0c;点击Git Bash Here 输入git fetch–从远程仓库中获取最新的分支代码和提交历史 就OK啦&#xff0c;现在分支可以正常查看了...

python后台框架简介

python后台框架 Python是一种流行的编程语言&#xff0c;它有许多优点&#xff0c;如简洁、易读、灵活和功能强大。Python也是一种常用的后端开发语言&#xff0c;它可以用来构建各种类型的网站和应用程序。Python有许多后端框架&#xff0c;可以帮助开发者快速地开发和部署后…...

spring boot validation使用

spring-boot-starter-validation 是 Spring Boot 中用于支持数据验证的模块。它建立在 Java Validation API&#xff08;JSR-380&#xff09;之上&#xff0c;提供了一种方便的方式来验证应用程序中的数据。以下是使用 spring-boot-starter-validation 的基本方法&#xff1a; …...

Hadoop3.3.4分布式安装

安装前提&#xff1a;已经配置好java环境&#xff0c;所有机器之间ssh的免密登录。 注意&#xff1a;下文中的flinkv1、flinkv2、flinkv3是三台服务器的别名 1.集群部署规划 注意&#xff1a;NameNode和SecondaryNameNode不要安装在同一台服务器 注意&#xff1a;ResourceMan…...

SQL ALTER TABLE 语句||SQL AUTO INCREMENT 字段

SQL ALTER TABLE 语句 ALTER TABLE 语句 ALTER TABLE 语句用于在现有表中添加、删除或修改列。 SQL ALTER TABLE 语法 若要向表中添加列&#xff0c;请使用以下语法&#xff1a; ALTER TABLE table_name ADD column_name datatype 若要删除表中的列&am…...

【源码系列】短剧系统开发国际版短剧系统软件平台介绍

系统介绍 短剧是一种快节奏、紧凑、有趣的戏剧形式&#xff0c;通过短时间的精彩表演&#xff0c;向观众传递故事的情感和思考。它以其独特的形式和魅力&#xff0c;吸引着观众的关注&#xff0c;成为了当代戏剧娱乐中不可或缺的一部分。短剧每一集都是一个小故事&#xff0c;…...

JavaWeb[总结]

文章目录 一、Tomcat1. BS 与 CS 开发介绍1.1 BS 开发1.2 CS 开发 2. 浏览器访问 web 服务过程详解(面试题)2.1 回到前面的 JavaWeb 开发技术栈图2.2 浏览器访问 web 服务器文件的 UML时序图(过程) &#xff01; 二、动态 WEB 开发核心-Servlet1. 为什么会出现 Servlet2. 什么是…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

Vue ③-生命周期 || 脚手架

生命周期 思考&#xff1a;什么时候可以发送初始化渲染请求&#xff1f;&#xff08;越早越好&#xff09; 什么时候可以开始操作dom&#xff1f;&#xff08;至少dom得渲染出来&#xff09; Vue生命周期&#xff1a; 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

leetcode73-矩阵置零

leetcode 73 思路 记录 0 元素的位置&#xff1a;遍历整个矩阵&#xff0c;找出所有值为 0 的元素&#xff0c;并将它们的坐标记录在数组zeroPosition中置零操作&#xff1a;遍历记录的所有 0 元素位置&#xff0c;将每个位置对应的行和列的所有元素置为 0 具体步骤 初始化…...