当前位置: 首页 > news >正文

[nlp] 损失缩放(Loss Scaling)loss sacle

在深度学习中,由于浮点数的精度限制,当模型参数非常大时,会出现数值溢出的问题,这可能会导致模型训练不稳定。为了解决这个问题,损失缩放(Loss Scaling)技术被引入,它通过缩放损失值来解决这个问题。

在深度学习中,损失缩放技术通常是通过将梯度进行缩放来实现的。具体来说,在计算梯度时,将梯度除以一个称为“loss scale”的缩放因子,然后再进行反向传播和优化器更新。这种技术可以有效地防止梯度爆炸和消失问题,提高模型的稳定性和收敛速度。

在使用损失缩放技术时,通常需要注意以下几点:

  1. 缩放因子应该适当,太小会导致模型收敛速度过慢,太大则可能导致梯度爆炸。

  2. 缩放因子应该在每个迭代步骤中动态调整,以适应模型参数的变化。

  3. 在使用混合精度训练时,损失缩放技术可以更好地缓解舍入误差,提高模型的稳定性。

总之,损失缩放是一种非常有用的技术,可以帮助深度学习模型更好地训练和收敛。

import torch.nn.utils.gradscale_autograd as gradscale# 定义损失函数
loss_fn = torch.nn.CrossEntropyLoss()# 计算损失值
outputs = model(inputs)
loss = loss_fn(outputs, labels)# 计算缩放因子
scale_factor = 

相关文章:

[nlp] 损失缩放(Loss Scaling)loss sacle

在深度学习中,由于浮点数的精度限制,当模型参数非常大时,会出现数值溢出的问题,这可能会导致模型训练不稳定。为了解决这个问题,损失缩放(Loss Scaling)技术被引入,它通过缩放损失值来解决这个问题。 在深度学习中,损失缩放技术通常是通过将梯度进行缩放来实现的。具…...

Django框架之视图层

【一】三板斧 【1】HttpResponse 返回字符串类型 【2】render 返回html页面,并且在返回给浏览器之前还可以给html页面传值 【3】redirect 重定向页面 在视图文件中写视图函数的时候不能没有返回值了,默认返回的是None,页面上就会报错 d…...

商城免费搭建之java商城 java电子商务Spring Cloud+Spring Boot+mybatis+MQ+VR全景+b2b2c

1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前端框架…...

AI机器学习实战 | 使用 Python 和 scikit-learn 库进行情感分析

专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https:/…...

CANoe-Logging模块如何抓取总线数据

在CANoe测量期间(CANoe运行时),总线数据经由Measurement Setup界面的各分析模块的输入口流入Trace、Graphics、Data等窗口中,或统计、或显示、或分析。总线数据除了能流入分析窗口中做解析外,还可以保存到log文件中,留作其他人分析或复现的文件。 在Measurement Setup界…...

Unity中Shader的矩阵加减法

文章目录 前言一、什么是矩阵矩阵就是一组数的阵列 二、矩阵的加法三、矩阵的负值四、矩阵的减法五、矩阵的表示 前言 Unity中Shader用到的矩阵加减法,以及矩阵的一些基础常识 一、什么是矩阵 矩阵就是一组数的阵列 1 2 3 4 5 6 二、矩阵的加法 两个矩阵相加就是…...

IIC总线概述和通信时序代码详细图文解析

IIC总线 1 IIC总线概述 I2C总线两线制包括:串行数据SDA(Serial Data)、串行时钟SCL(Serial Clock)。总线必须由主机(通常为微控制器)控制,主机产生串行时钟(SCL&#x…...

EtherCAT 伺服控制功能块实现

EtherCAT 是运动控制领域主要的通信协议,开源EtherCAT 主站协议栈 IgH 和SOEM 两个项目,IgH 相对更普及一些,但是它是基于Linux 内核的方式,比SOEM更复杂一些。使用IgH 协议栈编写一个应用程序,控制EtherCAT 伺服电机驱…...

如何基于OpenCV和Sklearn算法库开展机器学习算法研究

大家在做机器学习或深度学习研究过程中,不可避免都会涉及到对各种算法的研究使用,目前比较有名的机器学习算法库主要有OpenCV和Scikit-learn(简称Sklearn),二者都支持各种机器学习算法,主要有监督学习、无监…...

在 Node.js 中发出 HTTP 请求的 5 种方法

在 Node.js 中发出 HTTP 请求的 5 种方法 学习如何在 Node.js 中发出 HTTP 请求可能会让人感到不知所措,因为有数十个可用的库,每个解决方案都声称比上一个更高效。一些库提供跨平台支持,而另一些库则关注捆绑包大小或开发人员体验。 在这篇…...

pipeline agent分布式构建

开启 agent rootjenkins:~/learning-jenkins-cicd/07-jenkins-agents# docker-compose -f docker-compose-inbound-agent.yml up -d Jenkins配置添加 pipeline { agent { label docker-jnlp-agent }parameters {booleanParam(name:pushImage, defaultValue: true, descript…...

MySQL(17):触发器

概述 MySQL从 5.0.2 版本开始支持触发器。MySQL的触发器和存储过程一样,都是嵌入到MySQL服务器的一段程序。 触发器是由 事件来触发 某个操作,这些事件包括 INSERT 、 UPDATE 、 DELETE 事件。 所谓事件就是指用户的动作或者触发某项行为。 如果定义了触…...

挖掘PostgreSQL事务的“中间态”----更加严谨的数据一致性?

1.问题 今天在上班途中,中心的妹纸突然找我,非常温柔的找我帮忙看个数据库的报错。当然以我的性格,妹子找我的事情对我来说优先级肯定是最高的,所以立马放下手中的“小事”,转身向妹子走去。具体是一个什么样的问题呢…...

多种方法实现conda环境迁移

Conda 为包管理器和虚拟环境管理器。在配置完项目环境,进行了编写和测试代码,需要大量数据测试运行时,需要将其移至另一台主机上。Conda 提供了多种保存和移动环境的方法。 方法1: scp拷贝法,直接将envs的环境文件夹…...

C++ string类(一)

1.C语言中的字符串 C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符 OOP(Object Oriented Programming)的思想,而且…...

系统时间和JVM的Date时间不一致问题解决

通过Java得到的时间与操作系统时间不一致,如何修改Java虚拟机时间? 造成这种问题的原因可能是:你的操作系统时区跟你JVM的时区不一致。 你的操作系统应该是中国的时区吧,而JVM的时区不一定是中国时区,你在应用服务器…...

23111701[含文档+PPT+源码等]计算机毕业设计javaweb点餐系统全套餐饮就餐订餐餐厅

文章目录 **项目功能简介:****点餐系统分为前台和后台****前台功能介绍:****后台功能介绍:** **论文截图:****实现:****代码片段:** 编程技术交流、源码分享、模板分享、网课教程 🐧裙:77687156…...

RabbitMQ 部署及配置详解(集群部署)

单机部署请移步: RabbitMQ 部署及配置详解 (单机) RabbitMQ 集群是一个或 多个节点,每个节点共享用户、虚拟主机、 队列、交换、绑定、运行时参数和其他分布式状态。 一、RabbitMQ 集群可以通过多种方式形成: 通过在配置文件中列出群集节点以…...

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码

基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝠鲼觅食算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝠鲼觅食优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…...

「分享学习」SpringCloudAlibaba高并发仿斗鱼直播平台实战完结

[分享学习]SpringCloudAlibaba高并发仿斗鱼直播平台实战完结 第一段:简介 Spring Cloud Alibaba是基于Spring Cloud和阿里巴巴开源技术的微效劳框架,普遍应用于大范围高并发的互联网应用系统。本文将引见如何运用Spring Cloud Alibaba构建一个高并发的仿…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...