当前位置: 首页 > news >正文

选硬币该用动态规划

选硬币:
现有面值分别为1角1分,5分,1分的硬币,请给出找1角5分钱的最佳方案。

#include <iostream>
#include <vector>std::vector<int> findChange(int amount) {std::vector<int> coins = {11, 5, 1}; // 按面值从大到小排序的硬币面值std::vector<int> result(coins.size(), 0); // 用于存储每种硬币的数量for (int i = 0; i < coins.size(); i++) {int numCoins = amount / coins[i]; // 计算当前硬币面值的数量result[i] = numCoins; // 存储数量amount -= numCoins * coins[i]; // 更新剩余金额}return result;
}int main() {int amount = 15; // 需要找零的金额,单位为分std::vector<int> change = findChange(amount);std::cout << "找零方案为:" << std::endl;std::cout << "1角1分硬币数量:" << change[0] << std::endl;std::cout << "5分硬币数量:" << change[1] << std::endl;std::cout << "1分硬币数量:" << change[2] << std::endl;return 0;
}

一开始我想的很简单,以为是简单的求整除数。
但要是你仔细一想,这肯定是不对的,不是所有问题都能用贪心。
在求最优的过程中,贪心和动态规划一直是一对冤家,到底选择哪个,难道了很多英雄好汉,所以最好的方式就是具体问题具体分析,只有结合实际情况才能选出最适合问题的算法。
我们都知道贪心的局限性,只能求出其中一个解的,但是不是最优需要考量。
让我们来看一下用上面贪心求出来的解:
在这里插入图片描述
但这肯定不是最优解,我们在找零的时候遵循的规则是用最少的钱张数交给别人,这样才方便。
所以最佳找零方案为:
1角1分硬币数量:0
5分硬币数量:3
1分硬币数量:0
让我们来看看用动态规划写出来的代码:

#include <iostream>
using namespace std;const int N = 10005;
const int INF = 0x3f3f3f3f; 
int f[N], a[N];int main() {int n, w;cin >> n >> w;for (int i = 0; i < n; i++) {cin >> a[i];}for (int i = 1; i <= w; i++) {f[i] = INF;}for (int i = 0; i < n; i++) {for (int j = a[i]; j <= w; j++) {f[j] = min(f[j], f[j - a[i]] + 1);}}if (f[w] == INF) {cout << -1; } else {cout << f[w];}return 0;
}

在这里插入图片描述
结果和我们预期的完全一样

总结

选硬币在动态规划中是一种叫状态表示的题型,通常用一维/二维的数组组成状态转移方程,通过更新数组来达到获取最优解的目标

相关文章:

选硬币该用动态规划

选硬币&#xff1a; 现有面值分别为1角1分&#xff0c;5分&#xff0c;1分的硬币&#xff0c;请给出找1角5分钱的最佳方案。 #include <iostream> #include <vector>std::vector<int> findChange(int amount) {std::vector<int> coins {11, 5, 1}; /…...

LeetCode 2342. 数位和相等数对的最大和:哈希表

【LetMeFly】2342.数位和相等数对的最大和&#xff1a;哈希表 力扣题目链接&#xff1a;https://leetcode.cn/problems/max-sum-of-a-pair-with-equal-sum-of-digits/ 给你一个下标从 0 开始的数组 nums &#xff0c;数组中的元素都是 正 整数。请你选出两个下标 i 和 j&…...

Vulkan渲染引擎开发教程 一、开发环境搭建

一 安装 Vulkan SDK Vulkan SDK 就是我们要搞的图形接口 首先到官网下载SDK并安装 https://vulkan.lunarg.com/sdk/home 二 安装 GLFW 窗口库 GLFW是个跨平台的小型窗口库&#xff0c;也就是显示窗口&#xff0c;图形的载体 去主页下载并安装&#xff0c;https://www.glfw.…...

(带教程)商业版SEO关键词按天计费系统:关键词排名优化、代理服务、手机自适应及搭建教程

源码简介&#xff1a; 1、会员管理&#xff1a; 该系统分为三个级别的会员流程&#xff1a;总站管理员、代理与会员&#xff08;会员有普通会员、中级会员和高级会员三个等级&#xff09;。总站管理员可以添加代理用户并为其充值余额&#xff0c;代理用户可以为普通用户充值余…...

IDEA 快捷键汇总

目录 1、altinsert 2、ctrl/ 3、altenter 4、alt回车 5、ctrlD 6、ctrlaltL 7、ctrl点击 8、alt左键向下拉 9、ctrlaltv 10、ctrlaltwint 1、altinsert 快速创建代码&#xff0c;可以快速创建类中get set tostring等方法 2、ctrl/ 单行注释 3、altenter…...

目标检测YOLO实战应用案例100讲-基于机器视觉的水稻病虫害监测预警

目录 前言 国内外研究现状 国外研究现状 国内研究现状 2 相关理论与技术...

OrthoNets:正交信道注意网络

文章目录 摘要1、简介2、相关工作3、方法4、实验设置及结果5、论述6、结论摘要 链接:https://arxiv.org/pdf/2311.03071v2.pdf 设计有效的通道注意力机制要求人们找到一种有损压缩方法,以实现最佳特征表示。尽管该领域近年来取得了进展,但仍然存在一个未解决的问题。FcaNet…...

C_12练习题

一、单项选择题(本大题共20小题,每小题2分&#xff0c;共40分。在每小题给出的四个备选项中&#xff0c;选出一个正确的答案&#xff0c;并将所选项前的字母填写在答题纸的相应位置上。) C 风格的注释&#xff0c;也称块注释或多行注释&#xff0c;以&#xff08;&#xff09;…...

导航守卫有哪三种?

导航守卫主要分为三种&#xff1a; 全局前置守卫&#xff1a;使用 router.beforeEach 注册&#xff0c;作用是在路由切换开始前进行拦截和处理&#xff0c;可以用来进行一些全局的权限校验、登录状态检查等操作。 全局解析守卫&#xff1a;使用 beforeResolve 注册&#xff0c…...

强烈 推荐 13 个 Web前端在线代码IDE

codesandbox.io&#xff08;国外&#xff0c;提供免费空间&#xff09; 网址&#xff1a;https://codesandbox.io/ CodeSandbox 专注于构建完整的 Web 应用程序&#xff0c;支持多种流行的前端框架和库&#xff0c;例如 React、Vue 和 Angular。它提供了一系列增强的功能&…...

网络协议 WebSocket

一、介绍 WebSocket 是基于 TCP 的一种新的网络协议。它实现了浏览器与服务器全双工通信——浏览器和服务器只需要完成一次握手&#xff0c;两者之间就可以创建持久性的连接&#xff0c; 并进行双向数据传输 1、HTTP协议和WebSocket协议对比 HTTP 是短连接WebSocket 是长连接H…...

路径操作 合法路径名

python中路径的三种合法表示&#xff1a;在路径前面加上r、分隔符使用/。 在路径前面加上r python中在前面加上r&#xff0c;是防止字符转义。 例如&#xff1a;这样一个路径&#xff1a; \Undergraduate\School\Programme\Python_Learnpython会将这个字符串的**\和\后面的…...

JavaEE初阶 01 计算机是如何工作的

前言 今天开始进行对JavaEE的一些基本总结,希望大家能在阅读中有所收获,如有错误还望多多指正. 1.冯诺依曼体系结构 这个体系结构相信学计算机的同学都不陌生,但是你真的知道这个体系结构说的是什么嘛?请听我娓娓道来.首先我先给出一张冯诺依曼体系结构的简图 你可以理解为当前…...

【shell 常用脚本30例】

先了解下编写Shell过程中注意事项 开头加解释器&#xff1a;#!/bin/bash语法缩进&#xff0c;使用四个空格&#xff1b;多加注释说明。命名建议规则&#xff1a;全局变量名大写、局部变量小写&#xff0c;函数名小写&#xff0c;名字体现出实际作用。默认变量是全局的&#xf…...

【我和Python算法的初相遇】——体验递归的可视化篇

&#x1f308;个人主页: Aileen_0v0 &#x1f525;系列专栏:PYTHON数据结构与算法学习系列专栏&#x1f4ab;"没有罗马,那就自己创造罗马~" 目录 递归的起源 什么是递归? 利用递归解决列表求和问题 递归三定律 递归应用-整数转换为任意进制数 递归可视化 画…...

【C语言的秘密】密探—深究C语言中多组输入的秘密!

场景引入&#xff1a; 你是否在刷题过程中&#xff0c;经常遇到以下场景呢&#xff1f; 场景一&#xff1a; 场景二&#xff1a; 从这些题上都能看见输入描述中提出了一条多组输入&#xff0c;那啥是多组输入&#xff1f;如何实现它呢&#xff1f; 多组输入&#xff1a;在输入…...

ClickHouse 语法优化规则

ClickHouse 的 SQL 优化规则是基于RBO(Rule Based Optimization)&#xff0c;下面是一些优化规则 1 准备测试用表 1&#xff09;上传官方的数据集 将visits_v1.tar和hits_v1.tar上传到虚拟机&#xff0c;解压到clickhouse数据路径下 // 解压到clickhouse数据路径 sudo tar -xvf…...

3-运行第一个docker image-hello world

CentOS7.9下安装完成docker后,我们开始部署第一个docker image-hello world 1.以root用户登录CentOS7.9服务器,拉取centos7 images 命令: docker pull hello-world [root@centos79 ~]# docker pull hello-world Using default tag: latest latest: Pulling from library…...

【漏洞复现】泛微e-Weaver SQL注入

漏洞描述 泛微e-Weaver&#xff08;FANWEI e-Weaver&#xff09;是一款广泛应用于企业数字化转型领域的集成协同管理平台。作为中国知名的企业级软件解决方案提供商&#xff0c;泛微软件&#xff08;广州&#xff09;股份有限公司开发和推广了e-Weaver平台。 泛微e-Weaver旨在…...

「git 系列」git 如何存储代码的?

这里写自定义目录标题 git 文件存储位置git 数据模型示例分析分析前准备命令哈希值 具体示例 不同版本的提交&#xff0c;git 做了什么工作&#xff1f;snapshot vs delta-based vs backup参考资料 git 文件存储位置 想要了解如何存储&#xff0c;首先需要知道存储位置。 当我…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

云安全与网络安全:核心区别与协同作用解析

在数字化转型的浪潮中&#xff0c;云安全与网络安全作为信息安全的两大支柱&#xff0c;常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异&#xff0c;并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全&#xff1a;聚焦于保…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...