【项目设计】高并发内存池(三)[CentralCache的实现]
🎇C++学习历程:入门
- 博客主页:一起去看日落吗
- 持续分享博主的C++学习历程
博主的能力有限,出现错误希望大家不吝赐教- 分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记,树🌿成长之前也要扎根,也要在漫长的时光🌞中沉淀养分。静下来想一想,哪有这么多的天赋异禀,那些让你羡慕的优秀的人也都曾默默地翻山越岭🐾。
💐 🌸 🌷 🍀
目录
- 💐1. centralcache
- 🌷1.1 centralcache整体设计
- 🌷1.2 centralcache结构设计
- 🌷1.3 centralcache核心实现
💐1. centralcache
🌷1.1 centralcache整体设计
当线程申请某一大小的内存时,如果thread cache中对应的自由链表不为空,那么直接取出一个内存块进行返回即可,但如果此时该自由链表为空,那么这时thread cache就需要向central cache申请内存了。
central cache的结构与thread cache是一样的,它们都是哈希桶的结构,并且它们遵循的对齐映射规则都是一样的。这样做的好处就是,当thread cache的某个桶中没有内存了,就可以直接到central cache中对应的哈希桶里去取内存就行了。
- central cache与thread cache的不同之处
central cache与thread cache有两个明显不同的地方,首先,thread cache是每个线程独享的,而central cache是所有线程共享的,因为每个线程的thread cache没有内存了都会去找central cache,因此在访问central cache时是需要加锁的。
但central cache在加锁时并不是将整个central cache全部锁上了,central cache在加锁时用的是桶锁,也就是说每个桶都有一个锁。此时只有当多个线程同时访问central cache的同一个桶时才会存在锁竞争,如果是多个线程同时访问central cache的不同桶就不会存在锁竞争。
central cache与thread cache的第二个不同之处就是,thread cache的每个桶中挂的是一个个切好的内存块,而central cache的每个桶中挂的是一个个的span。

每个span管理的都是一个以页为单位的大块内存,每个桶里面的若干span是按照双链表的形式链接起来的,并且每个span里面还有一个自由链表,这个自由链表里面挂的就是一个个切好了的内存块,根据其所在的哈希桶这些内存块被切成了对应的大小。
🌷1.2 centralcache结构设计
- 页号的类型
每个程序运行起来后都有自己的进程地址空间,在32位平台下,进程地址空间的大小是232;而在64位平台下,进程地址空间的大小就是264。
页的大小一般是4K或者8K,我们以8K为例。在32位平台下,进程地址空间就可以被分成 232 / 2 13 = 219 个页,在64位平台下,进程地址空间就可以被分成264 / 2 13 = 251 个页。页号本质与地址是一样的,它们都是一个编号,只不过地址是以一个字节为一个单位,而页是以多个字节为一个单位。
由于页号在64位平台下的取值范围是[0,251 ),因此我们不能简单的用一个无符号整型来存储页号,这时我们需要借助条件编译来解决这个问题。
#ifdef _WIN64typedef unsigned long long PAGE_ID;
#elif _WIN32typedef size_t PAGE_ID;
#else//linux
#endif
需要注意的是,在32位下,_WIN32有定义,_WIN64没有定义;而在64位下,_WIN32和_WIN64都有定义。因此在条件编译时,我们应该先判断_WIN64是否有定义,再判断_WIN32是否有定义。
- span的结构
central cache的每个桶里挂的是一个个的span,span是一个管理以页为单位的大块内存,span的结构如下:
//管理以页为单位的大块内存
struct Span
{PAGE_ID _pageId = 0; //大块内存起始页的页号size_t _n = 0; //页的数量Span* _next = nullptr; //双链表结构Span* _prev = nullptr;size_t _useCount = 0; //切好的小块内存,被分配给thread cache的计数void* _freeList = nullptr; //切好的小块内存的自由链表
};
对于span管理的以页为单位的大块内存,我们需要知道这块内存具体在哪一个位置,便于之后page cache进行前后页的合并,因此span结构当中会记录所管理大块内存起始页的页号。
至于每一个span管理的到底是多少个页,这并不是固定的,需要根据多方面的因素来控制,因此span结构当中有一个_n成员,该成员就代表着该span管理的页的数量。
此外,每个span管理的大块内存,都会被切成相应大小的内存块挂到当前span的自由链表中,比如8Byte哈希桶中的span,会被切成一个个8Byte大小的内存块挂到当前span的自由链表中,因此span结构中需要存储切好的小块内存的自由链表。
span结构当中的_useCount成员记录的就是,当前span中切好的小块内存,被分配给thread cache的计数,当某个span的_useCount计数变为0时,代表当前span切出去的内存块对象全部还回来了,此时central cache就可以将这个span再还给page cache。
每个桶当中的span是以双链表的形式组织起来的,当我们需要将某个span归还给page cache时,就可以很方便的将该span从双链表结构中移出。如果用单链表结构的话就比较麻烦了,因为单链表在删除时,需要知道当前结点的前一个结点。
- 双链表结构
根据上面的描述,central cache的每个哈希桶里面存储的都是一个双链表结构,对于该双链表结构我们可以对其进行封装。
//带头双向循环链表
class SpanList
{
public:SpanList(){_head = new Span;_head->_next = _head;_head->_prev = _head;}void Insert(Span* pos, Span* newSpan){assert(pos);assert(newSpan);Span* prev = pos->_prev;prev->_next = newSpan;newSpan->_prev = prev;newSpan->_next = pos;pos->_prev = newSpan;}void Erase(Span* pos){assert(pos);assert(pos != _head); //不能删除哨兵位的头结点Span* prev = pos->_prev;Span* next = pos->_next;prev->_next = next;next->_prev = prev;}
private:Span* _head;
public:std::mutex _mtx; //桶锁
};
需要注意的是,从双链表删除的span会还给下一层的page cache,相当于只是把这个span从双链表中移除,因此不需要对删除的span进行delete操作。
- central cache的结构
central cache的映射规则和thread cache是一样的,因此central cache里面哈希桶的个数也是208,但central cache每个哈希桶中存储就是我们上面定义的双链表结构。
class CentralCache
{
public://...
private:SpanList _spanLists[NFREELISTS];
};
central cache和thread cache的映射规则一样,有一个好处就是,当thread cache的某个桶没有内存了,就可以直接去central cache对应的哈希桶进行申请就行了。
🌷1.3 centralcache核心实现
- central cache的实现方式
每个线程都有一个属于自己的thread cache,我们是用TLS来实现每个线程无锁的访问属于自己的thread cache的。而central cache和page cache在整个进程中只有一个,对于这种只能创建一个对象的类,我们可以将其设置为单例模式。
单例模式可以保证系统中该类只有一个实例,并提供一个访问它的全局访问点,该实例被所有程序模块共享。单例模式又分为饿汉模式和懒汉模式,懒汉模式相对较复杂,我们这里使用饿汉模式就足够了。
//单例模式
class CentralCache
{
public://提供一个全局访问点static CentralCache* GetInstance(){return &_sInst;}
private:SpanList _spanLists[NFREELISTS];
private:CentralCache() //构造函数私有{}CentralCache(const CentralCache&) = delete; //防拷贝static CentralCache _sInst;
};
为了保证CentralCache类只能创建一个对象,我们需要将central cache的构造函数和拷贝构造函数设置为私有,或者在C++11中也可以在函数声明的后面加上=delete进行修饰。
CentralCache类当中还需要有一个CentralCache类型的静态的成员变量,当程序运行起来后我们就立马创建该对象,在此后的程序中就只有这一个单例了。
CentralCache CentralCache::_sInst;
最后central cache还需要提供一个公有的成员函数,用于获取该对象,此时在整个进程中就只会有一个central cache对象了。
- 慢开始反馈调节算法
当thread cache向central cache申请内存时,central cache应该给出多少个对象呢?这是一个值得思考的问题,如果central cache给的太少,那么thread cache在短时间内用完了又会来申请;但如果一次性给的太多了,可能thread cache用不完也就浪费了。
我们这里采用了一个慢开始反馈调节算法。当thread cache向central cache申请内存时,如果申请的是较小的对象,那么可以多给一点,但如果申请的是较大的对象,就可以少给一点。
我们就可以根据所需申请的对象的大小计算出具体给出的对象个数,并且可以将给出的对象个数控制到2~512个之间。也就是说,就算thread cache要申请的对象再小,我最多一次性给出512个对象;就算thread cache要申请的对象再大,我至少一次性给出2个对象
//管理对齐和映射等关系
class SizeClass
{
public://thread cache一次从central cache获取对象的上限static size_t NumMoveSize(size_t size){assert(size > 0);//对象越小,计算出的上限越高//对象越大,计算出的上限越低int num = MAX_BYTES / size;if (num < 2)num = 2;if (num > 512)num = 512;return num;}
};
但就算申请的是小对象,一次性给出512个也是比较多的,基于这个原因,我们可以在FreeList结构中增加一个叫做_maxSize的成员变量,该变量的初始值设置为1,并且提供一个公有成员函数用于获取这个变量。也就是说,现在thread cache中的每个自由链表都会有一个自己的_maxSize。
//管理切分好的小对象的自由链表
class FreeList
{
public:size_t& MaxSize(){return _maxSize;}private:void* _freeList = nullptr; //自由链表size_t _maxSize = 1;
};
此时当thread cache申请对象时,我们会比较_maxSize和计算得出的值,取出其中的较小值作为本次申请对象的个数。此外,如果本次采用的是_maxSize的值,那么还会将thread cache中该自由链表的_maxSize的值进行加一。
因此,thread cache第一次向central cache申请某大小的对象时,申请到的都是一个,但下一次thread cache再向central cache申请同样大小的对象时,因为该自由链表中的_maxSize增加了,最终就会申请到两个。直到该自由链表中_maxSize的值,增长到超过计算出的值后就不会继续增长了,此后申请到的对象个数就是计算出的个数。(这有点像网络中拥塞控制的机制)
- 从中心缓存获取对象
每次thread cache向central cache申请对象时,我们先通过慢开始反馈调节算法计算出本次应该申请的对象的个数,然后再向central cache进行申请。
如果thread cache最终申请到对象的个数就是一个,那么直接将该对象返回即可。为什么需要返回一个申请到的对象呢?因为thread cache要向central cache申请对象,其实由于某个线程向thread cache申请对象但thread cache当中没有,这才导致thread cache要向central cache申请对象。因此central cache将对象返回给thread cache后,thread cache会再将该对象返回给申请对象的线程。
但如果thread cache最终申请到的是多个对象,那么除了将第一个对象返回之外,还需要将剩下的对象挂到thread cache对应的哈希桶当中。
//从中心缓存获取对象
void* ThreadCache::FetchFromCentralCache(size_t index, size_t size)
{//慢开始反馈调节算法//1、最开始不会一次向central cache一次批量要太多,因为要太多了可能用不完//2、如果你不断有size大小的内存需求,那么batchNum就会不断增长,直到上限size_t batchNum = std::min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(size));if (batchNum == _freeLists[index].MaxSize()){_freeLists[index].MaxSize() += 1;}void* start = nullptr;void* end = nullptr;size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, size);assert(actualNum >= 1); //至少有一个if (actualNum == 1) //申请到对象的个数是一个,则直接将这一个对象返回即可{assert(start == end);return start;}else //申请到对象的个数是多个,还需要将剩下的对象挂到thread cache中对应的哈希桶中{_freeLists[index].PushRange(NextObj(start), end);return start;}
}
- 从中心缓存获取一定数量的对象
这里我们要从central cache获取n个指定大小的对象,这些对象肯定都是从central cache对应哈希桶的某个span中取出来的,因此取出来的这n个对象是链接在一起的,我们只需要得到这段链表的头和尾即可,这里可以采用输出型参数进行获取。
//从central cache获取一定数量的对象给thread cache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size)
{size_t index = SizeClass::Index(size);_spanLists[index]._mtx.lock();//加锁//在对应哈希桶中获取一个非空的spanSpan* span = GetOneSpan(_spanLists[index], size);assert(span); //span不为空assert(span->_freeList); //span当中的自由链表也不为空//从span中获取n个对象//如果不够n个,有多少拿多少start = span->_freeList;end = start;size_t i = 0;size_t actualNum = 1;while ( i < batchNum - 1 && NextObj(end) != nullptr){end = NextObj(end);++actualNum;++i;}span->_freeList = NextObj(end); //取完后剩下的对象继续放到自由链表NextObj(end) = nullptr; //取出的一段链表的表尾置空
// span->_useCount += actualNum; //更新被分配给thread cache的计数_spanLists[index]._mtx.unlock(); //解锁return actualNum;}
由于central cache是所有线程共享的,所以我们在访问central cache中的哈希桶时,需要先给对应的哈希桶加上桶锁,在获取到对象后再将桶锁解掉。
在向central cache获取对象时,先是在central cache对应的哈希桶中获取到一个非空的span,然后从这个span的自由链表中取出n个对象即可,但可能这个非空的span的自由链表当中对象的个数不足n个,这时该自由链表当中有多少个对象就给多少就行了。
也就是说,thread cache实际从central cache获得的对象的个数可能与我们传入的n值是不一样的,因此我们需要统计本次申请过程中,实际thread cache获取到的对象个数,然后根据该值及时更新这个span中的小对象被分配给thread cache的计数。
需要注意的是,虽然我们实际申请到对象的个数可能比n要小,但这并不会产生任何影响。因为thread cache的本意就是向central cache申请一个对象,我们之所以要一次多申请一些对象,是因为这样一来下次线程再申请相同大小的对象时就可以直接在thread cache里面获取了,而不用再向central cache申请对象。
- 插入一段范围的对象到自由链表
此外,如果thread cache最终从central cache获取到的对象个数是大于一的,那么我们还需要将剩下的对象插入到thread cache中对应的哈希桶中,为了能让自由链表支持插入一段范围的对象,我们还需要在FreeList类中增加一个对应的成员函数。
//管理切分好的小对象的自由链表
class FreeList
{
public://插入一段范围的对象到自由链表void PushRange(void* start, void* end){assert(start);assert(end);//头插NextObj(end) = _freeList;_freeList = start;}
private:void* _freeList = nullptr; //自由链表size_t _maxSize = 1;
};
相关文章:
【项目设计】高并发内存池(三)[CentralCache的实现]
🎇C学习历程:入门 博客主页:一起去看日落吗持续分享博主的C学习历程博主的能力有限,出现错误希望大家不吝赐教分享给大家一句我很喜欢的话: 也许你现在做的事情,暂时看不到成果,但不要忘记&…...
2023年,35岁测试工程师只能被“优化裁员”吗?肯定不是····
国内的互联网行业发展较快,所以造成了技术研发类员工工作强度比较大,同时技术的快速更新又需要员工不断的学习新的技术。因此淘汰率也比较高,超过35岁的基层研发类员工,往往因为家庭原因、身体原因,比较难以跟得上工作…...
gitlab部署使用,jenkins部署使用
gitlab部署使用,jenkins部署使用在线安装gitlab下载gitlab安装gitlab使用gitlab设置中文修改管理员密码创建组,创建项目,创建用户jenkins下载jenkins安装jenkin使用jenkins更改管理员密码配置拉取代码配置登录gitlab拉取代码的账号密码配置项目配置gitlab仓库配置构…...
从零开始的机械臂yolov5抓取gazebo仿真(环境搭建篇下)
sunday功能包使用介绍以及开源 sunday我给自己机械臂的命名,原型是innfos的gluon机械臂。通过sw模型文件转urdf。Sunday项目主要由六个功能包sunday_description、sunday_gazebo、sunday_moveit_config、yolov5_ros、vacuum_plugin、realsense_ros_gazebo组成&…...
GCC编译器 MinGW的下载安装使用教程
哎 总所周知 gcc可以用来编译C 和C。在linux广泛应用,那么window怎么使用gcc呢。就要用到gcc的window工具----MInGW,安装好之后,直接可以在windows的dos界面编译。下面讲解安装使用过程。1.官网下载MinGW - Minimalist GNU for Windows downl…...
【项目实战】SpringMVC配置全局属性,是实现WebMvcConfigurer接口,还是直接继承WebMvcConfigurationSupport类?
一、说明 官方推荐以下两种方式来配置全局的SpringMVC的相关属性 方式一:实现WebMvcConfigurer接口(推荐)方式二:直接继承WebMvcConfigurationSupport类。介绍一下两者区别吧。 二、 WebMvcConfigurer介绍 WebMvcConfigurer是一个接口,用于配置全局的SpringMVC的相关属…...
房产营销、地产中介如何高效低成本获客?
数字化对企业而言,机遇和挑战并存。房产企业可借助数字化加强日益扩大的业务规模和业务领域管理,以提升管理效率,降低管理难度;基于数字化技术加强客户的服务体验,进而收集多业态客户和场景数据,拓展创新业…...
Kotlin-作用域函数
在对象的上下文中执行代码块。当您在提供lambda表达式的对象上调用这样的函数时,它会形成一个临时作用域。在此范围内,可以不带名称地访问对象。这样的函数称为作用域函数。 let run with apply also 作用域函数不会引入任何新的技术功能,但它…...
QNX7.1 交叉编译开源库
1.下载QNX7.1 SDK并解压 ITL:~/work/tiqnx710$ ls -l 总用量 16 drwxrwxr-x 4 xxx4096 1月 28 13:38 host -rwxrwxr-x 1 xxx 972 1月 28 13:38 qnxsdp-env.bat -rwxrwxr-x 1 xxx 1676 1月 28 13:38 qnxsdp-env.sh drwxrwxr-x 3 xxx 4096 1月 28 13:38 target xxxITL:~/work/ti…...
论文投稿指南——中文核心期刊推荐(外国语言)
【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...
Fabric系列 - 链码-内部链码的特性
(1)Fabric repo下的案例 Chaincode(1.4的目录结构) fabric/examples/chaincode/go ├── example02 #一个简单的转账合约 ├── eventsender #发送事件通知 ├── passthru #调用其他链码(或者其他channel的链码)example02 (转账) 一个简单的转账合约。该链码简单实…...
NetApp SnapCenter 备份管理 ——借助应用程序一致的数据备份管理,简化混合云操作
NetApp SnapCenter 简单、可扩展、赋权:跨 Data Fabric 的企业级数据保护和克隆管理 主要优势 • 利用与应用程序集成的工作流和预定义策略简化备份、恢复和克隆管理。 • 借助基于存储的数据管理功能提高性能和可用性,并缩短测试和开发用时。 • 提供基…...
Java内置队列和高性能队列Disruptor
一、队列简介 队列是一种特殊的线性表,遵循先入先出、后入后出(FIFO)的基本原则,一般来说,它只允许在表的前端进行删除操作,而在表的后端进行插入操作,但是java的某些队列运行在任何地方插入删…...
比特数据结构与算法(第四章_下)二叉树的遍历
本章将会详细讲解二叉树遍历的四种方式,分别为前序遍历、中序遍历、后续遍历和层序遍历。在学习遍历之前,会先带大家回顾一下二叉树的基本概念。学习二叉树的基本操作前,需要先创建一颗二叉树,然后才能学习其相关的基本操作&#…...
chatGPT是什么
2022年11月,人工智能公司OpenAI推出了一款聊天机器人:ChatGPT。它能够通过学习和理解人类语言来进行对话,还能与聊天对象进行有逻辑的互动。除了聊天,ChatGPT还能够根据聊天对象提出的要求,进行文字翻译、文案撰写、代…...
jenkins漏洞集合
目录 CVE-2015-8103 反序列化远程代码执行 CVE-2016-0788 Jenkins CI和LTS 远程代码执行漏洞 CVE-2016-0792 低权限用户命令执行 CVE-2016-9299 代码执行 CVE-2017-1000353 Jenkins-CI 远程代码执行 CVE-2018-1000110 用户枚举 CVE-2018-1000861 远程命令执行 CVE-2018…...
用canvas画一个炫酷的粒子动画倒计时
前言 😆 这是一篇踩在活动尾声的文章,主要是之前在摸鱼社群里有人发了个粒子动画的特效视频,想着研究研究写一篇文章出来看看,结果这一下子就研究了半个多月。 😂 下面就把研究成果通过文字的形式展现出来吧…...
Java技术学习——Maven相关知识
一、什么是Maven? Maven是Apache软件基金会组织维护的一款专门为Java项目提供构建和依赖管理支持的工具。 1.1 构建 构建过程包含的主要环节如下: 清理:删除上一次构建的结果,为下一次构建做好准备编译:Java源程序…...
C++ 认识和了解C++
1.在使用C语言写代码的时候开头要用到的是: #include<iostream> using namespace std;不可以写成这样: #include iostream.h(1)iostream是输入输出流类, istream输入流类 cin >> ostream输出流类 cout &…...
u盘误删的文件怎么找回
u盘误删的文件怎么找回?u盘的特点之一就是极其便携,可以容纳各种格式的数据和文件,需要时可以直接使用。每次使用都会或多或少的存放一些文件,但有使用就会有删除,为了不影响使用性,清理存储空间是必要的。清理中如果…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

