当前位置: 首页 > news >正文

【亲测可用】BEV Fusion (MIT) 环境配置

CUDA环境

首先我们需要打上对应版本的显卡驱动:
在这里插入图片描述
接下来下载CUDA包和CUDNN包:

wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda_11.6.2_510.47.03_linux.run
sudo sh cuda_11.6.2_510.47.03_linux.run
wget https://developer.nvidia.com/compute/cudnn/secure/8.4.0/local_installers/11.6/cudnn-local-repo-ubuntu2004-8.4.0.27_1.0-1_amd64.deb
sudo apt install ./cudnn-local-repo-ubuntu2004-8.4.0.27_1.0-1_amd64.deb

打开 ~/.bashrc文件,添加以下内容到最后:

export CUDA_HOME=/usr/local/cuda-11.6
export PATH="/usr/local/cuda-11.6/bin:$PATH"
export LD_LIBRARY_PATH="/usr/lcoal/cuda-11.6/lib64:$LD_LIBRARY_PATH"

在这里插入图片描述

前置环境(可选)

需要安装openmpi(这个我也不确定需不需要,小伙伴们可以试试)
下载openmpi安装包:

wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.4.tar.gz

解压安装

cd openmpi-4.1.4
./configure --prefix=/usr/local/openmpi
make -j8
sudo make install

~/.bashrc文件里添加环境变量:

MPI_HOME=/usr/local/openmpi
OMPI_MCA_opal_cuda_support=true
export PATH=${MPI_HOME}/bin:$PATH
export LD_LIBRARY_PATH=${MPI_HOME}/lib:$LD_LIBRARY_PATH
export MANPATH=${MPI_HOME}/share/man:$MANPATH

测试安装是否成功

cd openmpi-x.x.x/examples
make
mpirun -np 4 hello_c

在这里插入图片描述

conda安装

找一个Anaconda或者miniconda下载安装:

bash Anaconda3-2021.05-Linux-x86_64.sh

正式环境配置

OK,准备完毕,开始正式配环境
首先创建一个虚拟环境:

conda create -n your_env_name python=3.8
conda activate your_env_name

接下来建议完全按照我的指令来,里面的版本问题我已经踩过坑了

pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.4.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html
pip install mmdet==2.20.0
conda install openmpi
conda install mpi4py
pip install Pillow==8.4.0
pip install tqdm
pip install torchpack
pip install nuscenes-devkit
pip install ninja
pip install numpy==1.19
pip install numba==0.48.0
pip install shapely==1.8.0

参数修改

贴上MIT版本BEV FUSION的地址,clone一下代码:

git clone https://github.com/mit-han-lab/bevfusion.git

以下两处需要改!
首先是这个文件,里面的4096都改成256,否则会爆显存。

mmdet3d/ops/spconv/src/indice_cuda.cu

接下来是 项目根目录的setup.py,需要把显卡算力改成自己对应的,其余的注释掉。例如我的3080是86(具体的算力对应大家可以查查)

"-gencode=arch=compute_86,code=sm_86"

数据集准备

需要下载nuscenes数据集,大概600多GB,解压之后,把train数据集(包括地图扩展包)放到项目文件夹的data/nuscenes目录下,如下红框所示:
在这里插入图片描述
回到项目根目录,运行数据集生成脚本,大概跑1小时,最后会变成上图的样子:

python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes

运行代码

首先执行配置脚本:

python setup.py develop

接下来下载预训练参数:

./tools/download_pretrained.sh

最后执行训练指令,原文readme里-np后面是8,这里要改成1(因为我们PC上跑是单GPU),不然会卡住不动

torchpack dist-run -np 1 python tools/train.py configs/nuscenes/det/transfusion/secfpn/camera+lidar/swint_v0p075/convfuser.yaml --model.encoders.camera.backbone.init_cfg.checkpoint pretrained/swint-nuimages-pretrained.pth --load_from pretrained/lidar-only-det.pth

在这里插入图片描述

相关文章:

【亲测可用】BEV Fusion (MIT) 环境配置

CUDA环境 首先我们需要打上对应版本的显卡驱动: 接下来下载CUDA包和CUDNN包: wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda_11.6.2_510.47.03_linux.run sudo sh cuda_11.6.2_510.47.03_linux.runwget htt…...

【调试方法】基于vs环境下的实用调试技巧

前言: 对万千程序猿来说,在这个世界上如果有比写程序更痛苦的事情,那一定是亲手找出自己编写的程序中的bug(漏洞)。作为新手在我们日常写代码中,经常会出现报错的情况(好的程序员只是比我们见过…...

单目标应用:蜣螂优化算法DBO优化RBF神经网络实现数据预测(提供MATLAB代码)

一、RBF神经网络 1988年,Broomhead和Lowc根据生物神经元具有局部响应这一特点,将RBF引入神经网络设计中,产生了RBF(Radical Basis Function)。1989年,Jackson论证了RBF神经网络对非线性连续函数的一致逼近性能。 RBF的基本思想是…...

MTK平台开发入门到精通(Thermal篇)热管理介绍

文章目录 一、热管理组成二、Linux Thermal Framework2.1、thermal_zone 节点2.2、cooling_device 节点三、Thermal zones沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇文章将介绍MTK平台的热管理机制,热管理机制是为了防止模组在高温下工作导致硬件损坏而存在的…...

最好的 QML 教程,让你的代码飞起来!

想必大家都知道,亮哥一直深耕于 CSDN,坚持了好很多年,目前为止,原创已经 500 多篇了,一路走来相当不易。当然了,中间有段时间比较忙,没怎么更新。就拿 QML 来说,最早的一篇文章还是 …...

笔记(六)——stack容器的基础理论知识

stack是堆栈容器&#xff0c;元素遵循先进后出的顺序。头文件&#xff1a;#include<stack>一、stack容器的对象构造方法stack采用模板类实现默认构造例如stack<T> vecT&#xff1b;#include<iostream> #include<stack> using namespace std; int main(…...

Web前端学习:四 - 练习

三九–四一&#xff1a;百度页面制作 1、左右居中&#xff1a; text-align: center; 2、去掉li默认的状态 list-style: none; li中有的有点&#xff0c;有的有序&#xff0c;此代码去掉默认状态 3、伪类&#xff1a;hovar 一般显示为color: #0f0e0f&#xff0c; 当鼠标接触时…...

odoo15 标题栏自定义

odoo15 标题栏自定义 如何显示为自定义呢 效果如下: 代码分析: export class WebClient extends Component {setup() {this.menuService = useService("menu");this.actionService = useService("action");this.title = useService("title&…...

视觉SLAM十四讲 ch3 (三维空间刚体运动)笔记

本讲目标 ●理解三维空间的刚体运动描述方式:旋转矩阵、变换矩阵、四元数和欧拉角。 ●学握Eigen库的矩阵、几何模块使用方法。 旋转矩阵、变换矩阵 向量外积 向量外积&#xff08;又称叉积或向量积&#xff09;是一种重要的向量运算&#xff0c;它表示两个向量所形成的平行…...

问题解决:java.net.SocketTimeoutException: Read timed out

简单了解Sockets Sockets&#xff1a;两个计算机应用程序之间逻辑链接的一个端点&#xff0c;是应用程序用来通过网络发送和接收数据的逻辑接口 是IP地址和端口号的组合每个Socket都被分配了一个用于标识服务的特定端口号基于连接的服务使用基于tcp的流Sockets Java为客户端…...

前端代码优化方法

1.封装的css样式&#xff0c;增加样式复用性。如果页面加载10个css文件,每个文件1k&#xff0c;那么也要比只加载一个100k的css文件慢 2.减少css嵌套&#xff0c;最好不要嵌套三层以上 3.不要在ID选择器前面进行嵌套&#xff0c;ID本来就是唯一的而且权限值大&#xff0c;嵌套完…...

【批处理脚本】-1.16-文件内字符串查找增强命令findstr

"><--点击返回「批处理BAT从入门到精通」总目录--> 共9页精讲(列举了所有findstr的用法,图文并茂,通俗易懂) 在从事“嵌入式软件开发”和“Autosar工具开发软件”过程中,经常会在其集成开发环境IDE(CodeWarrior,S32K DS,Davinci,EB Tresos,ETAS…)中…...

三天吃透Redis面试八股文

本文已经收录到Github仓库&#xff0c;该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点&#xff0c;欢迎star~ Github地址&#xff1a;https://github.com/…...

数据湖架构Hudi(三)Hudi核心概念

三、Apache Hudi核心概念 3.1 基本概念 Hudi 提供了Hudi 表的概念&#xff0c; 这些表支持CRUD操作&#xff0c; 可以利用现有的大数据集群比如HDFS做数据文件存储&#xff0c; 然后使用SparkSQL或Hive等分析引擎进行数据分析查询。 Hudi表的三个主要组件&#xff1a; 有序的…...

在数字优先的世界中打击知识产权盗窃

在当今数据驱动的世界中&#xff0c;全球许多组织所面临的期望和需求正在达到前所未有的水平。 为了迎接挑战&#xff0c;数据驱动的方法是必要的&#xff0c;需要有效的数字化转型来提高运营效率、简化流程并从遗留技术中获得更多收益。 但是&#xff0c;虽然数字优先方法可…...

机器学习算法原理——逻辑斯谛回归

文章目录逻辑斯谛回归二项逻辑斯谛回归模型极大似然估计多项逻辑斯谛回归模型总结归纳逻辑斯谛回归 写在前面&#xff1a;逻辑斯谛回归最初是数学家 Verhulst 用来研究人口增长是所发现的&#xff0c;是一个非常有趣的发现过程&#xff0c; b 站有更详细的背景及过程推导&…...

【华为OD机试 】最优资源分配/芯片资源占用(C++ Java JavaScript Python)

文章目录 题目描述输入描述输出描述备注用例题目解析C++JavaScriptJavaPython题目描述 某块业务芯片最小容量单位为1.25G,总容量为M*1.25G,对该芯片资源编号为1,2,…,M。该芯片支持3种不同的配置,分别为A、B、C。 配置A:占用容量为 1.25 * 1 = 1.25G配置B:占用容量为 …...

600 条最强 Linux 命令总结

1、基本命令 uname -m 显示机器的处理器架构 uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 &#xff08;SMBIOS / DMI&#xff09; hdparm -i /dev/hda 罗列一个磁盘的架构特性 hdparm -tT /dev/sda 在磁盘上执行测试性读取操作系统信息 arch 显示机器…...

python自学之《21天学通Python》(15)——第18章 数据结构基础

数据结构是用来描述一种或多种数据元素之间的特定关系&#xff0c;算法是程序设计中对数据操作的描述&#xff0c;数据结构和算法组成了程序。对于简单的任务&#xff0c;只要使用编程语言提供的基本数据类型就足够了。而对于较复杂的任务&#xff0c;就需要使用比基本的数据类…...

从功能到自动化,熬夜3天整理出这一份2000字学习指南~

学习自动化这个想法&#xff0c;其实自己在心里已经琢磨了很久&#xff0c;就是一直没付诸实践&#xff0c;觉得现在手工测试已经能满足当前的工作需要&#xff0c;不想浪费时间去学习新的东西&#xff0c;有点时间还不如刷刷视频、看看小说等。 第一次有学习Selenium的冲动是…...

客户端攻击(溯源攻击,获取客户端信息)

目录 背景 为什么 示例 探索HTML应用程序 HTA攻击行为(Powershell代码) 背景 如果创建的文件扩展名为.hta而不是.html,Internet Explorer将自动将其解释为html应用程序,并提供使...

visual studio 2022 社区版 c# 环境搭建及安装使用【图文解析-小白版】

visual studio 2022 社区版 c# 环境搭建及安装使用【图文解析-小白版】visual studio 安装 C# 环境安装流程创建c#窗体应用程序visual studio 安装 C# 环境 首先&#xff0c;进入其官网下载对应的visual studio社区版本&#xff0c;官网链接: https://visualstudio.microsoft…...

21- 神经网络模型_超参数搜索 (TensorFlow系列) (深度学习)

知识要点 fetch_california_housing&#xff1a;加利福尼亚的房价数据&#xff0c;总计20640个样本&#xff0c;每个样本8个属性表示&#xff0c;以及房价作为target 超参数搜索的方式: 网格搜索, 随机搜索, 遗传算法搜索, 启发式搜索 超参数训练后用&#xff1a; gv.estimat…...

《NFL橄榄球》:芝加哥熊·橄榄1号位

芝加哥熊&#xff08;英语&#xff1a;Chicago Bears&#xff09;是一支职业美式橄榄球球队。位于伊利诺伊州的芝加哥。现时为全国橄榄球联盟的国家联盟北区的球队。他们曾经赢出九次美式橄榄球比赛的冠军&#xff0c;分别为八次旧制全国橄榄球联盟和一次超级碗冠军&#xff08…...

【ES】Elasticsearch核心基础概念:文档与索引

es的核心概念主要是&#xff1a;index(索引)、Document(文档)、Clusters(集群)、Node(节点)与实例&#xff0c;下面我们先来了解一下Document与Index。 RESTful APIs 在讲解Document与Index概念之前&#xff0c;我们先来了解一下RESTful APIs&#xff0c;因为下面讲解Documen…...

实时手势识别(C++与python都可实现)

一、前提配置&#xff1a; Windows&#xff0c;visual studio 2019&#xff0c;opencv&#xff0c;python10&#xff0c;opencv-python&#xff0c;numpy&#xff0c;tensorflow&#xff0c;mediapipe&#xff0c;math 1.安装python环境 这里我个人使用的安装python10&#…...

15个Spring扩展点,一般人知道的不超过5个!

Spring的核心思想就是容器&#xff0c;当容器refresh的时候&#xff0c;外部看上去风平浪静&#xff0c;其实内部则是一片惊涛骇浪&#xff0c;汪洋一片。Spring Boot更是封装了Spring&#xff0c;遵循约定大于配置&#xff0c;加上自动装配的机制。很多时候我们只要引用了一个…...

Elasticsearch:以 “Painless” 方式保护你的映射

Elasticsearch 是一个很棒的工具&#xff0c;可以从各种来源收集日志和指标。 它为我们提供了许多默认处理&#xff0c;以便提供最佳用户体验。 但是&#xff0c;在某些情况下&#xff0c;默认处理可能不是最佳的&#xff08;尤其是在生产环境中&#xff09;&#xff1b; 因此&…...

js几种对象创建方式

适用于不确定对象内部数据方式一&#xff1a;var p new Object(); p.name TOM; p.age 12 p.setName function(name) {this.name name; }// 测试 p.setName(jack) console.log(p.name,p.age)方式二&#xff1a; 对象字面量模式套路&#xff1a;使用{}创建对象&#xff0c;同…...

阿里云服务器ECS适用于哪些应用场景?

云服务器ECS具有广泛的应用场景&#xff0c;既可以作为Web服务器或者应用服务器单独使用&#xff0c;又可以与其他阿里云服务集成提供丰富的解决方案。 云服务器ECS的典型应用场景包括但不限于本文描述&#xff0c;您可以在使用云服务器ECS的同时发现云计算带来的技术红利。 阿…...

做果蔬零售的网站/深圳全网推广托管

1viewdidLoad在什么时候调用&#xff1a;viewDidLoad在代码运行到[self.view addSubview : x.view]时调用。...

微信运营推广方案/北京做的好的seo公司

目录 一、概述 二、内部类的分类 1、成员内部类 2、局部内部类 三、匿名内部类 1、匿名内部类含义 2、匿名内部类的作用与格式 一、概述 将类写在其他类的内部&#xff0c;可以写在其他类的成员位置和局部位置&#xff0c;这时写在其他类内部的类就称之为内部类&#x…...

卖网站怎样做/传播易广告投放平台

这也许是一个让粉丝略伤感的新闻&#xff0c;《Halo2》PC多人游戏服务器将在下个月永久关闭。343 Industries注意到服务器的峰值在线人数一直仅有20人&#xff0c;因此做出了关闭服务器的决定。查看原图343 Industries在Halo Waypoint中说道&#xff1a;“我们很遗憾地宣布&…...

wordpress 屏蔽搜索/企业公司网站建设

本题要求编写程序&#xff0c;计算平方根序列1​2​3​⋯的前N项之和。可包含头文件math.h&#xff0c;并调用sqrt函数求平方根。 输入格式: 输入在一行中给出一个正整数N。 输出格式: 在一行中按照“sum S”的格式输出部分和的值S&#xff0c;精确到小数点后两位。题目保…...

义乌市网站制作/全网优化哪家好

Android编程中&#xff0c;ScrollView嵌套ListView时&#xff0c;会无法正确的计算ListView的大小。解决的办法如下&#xff1a; &#xff08;非原创&#xff0c;网上搜到的解决方法&#xff09; public class MainActivity extends Activity { private ListView listView; …...

新疆生产建设兵团人社厅网站/衡水seo营销

一、题目[LeetCode-38] 给定一个正整数 n &#xff0c;输出外观数列的第 n 项。 「外观数列」是一个整数序列&#xff0c;从数字 1 开始&#xff0c;序列中的每一项都是对前一项的描述。 你可以将其视作是由递归公式定义的数字字符串序列&#xff1a; countAndSay(1) &quo…...