卷积神经网络训练情感分析
文章目录
- 1 CNN在自然语言的典型应用
- 2 代码解释
- 3 建议
1 CNN在自然语言的典型应用
- 卷积的作用在于利用文字的局部特征,一个词的前后几个词必然和这个词本身相关,这组成该词所代表的词群
- 词群进而会对段落文字的意思进行影响,决定这个段落到底是正向,还是负向
- 深度学习中的卷积让神经网络去构造特征
- 下面介绍用Keras搭建卷积神经网络来处理情感分析的分类问题
2 代码解释
- Sequential(): 这个语句初始化了一个空的顺序模型。顺序模型是线性的,意味着你可以逐层添加,每一层都按顺序连接到前一层。
通常情况下,你会在这一行之后添加额外的代码行,以向模型中添加层。 - Embedding: 这是 Keras 中的一个嵌入层。嵌入层通常用于将整数序列(例如文本中的单词索引)映射为密集向量的序列。在自然语言处理中,这常用于将单词嵌入到连续向量空间中。
- vocab_size: 这是词汇表的大小,表示模型能够处理的不同单词的数量。
- 64: 这是嵌入向量的维度,即每个单词将被嵌入到一个64维的向量空间中。
- input_length: 这是输入序列的长度,指定了输入数据的每个样本有多少个时间步(时间步是序列中的单个元素)。在自然语言处理中,它通常对应于文本序列的最大长度。
- 全部代码
from keras.datasets import imdb
from keras.layers import Dense,Dropout,Activation,Flatten
from keras.layers import Conv1D,MaxPooling1D
from keras.layers import Embedding
from keras.models import Sequential
from keras.preprocessing import sequence
import numpy as npmaxword = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data()
x_train = sequence.pad_sequences(x_train,maxlen=maxword)
x_test = sequence.pad_sequences(x_test,maxlen=maxword)
vocab_size = np.max([np.max(x_train[i]) for i in range(x_train.shape[0])])+1
model = Sequential()
model.add(Embedding(vocab_size,64,input_length = maxword))model.add(Conv1D(filters=64,kernel_size=3,padding='same',activation='relu'))model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))model.add(Conv1D(filters=128,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten)
model.add(Dense(64,activation='relu'))
model.add(Dense(32,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='rmsprop',epochs = 20,batch_size = 100)
scores = model.evaluate(x_test,y_test,verbose=1)
print(scores)
3 建议
- 可以试着调整模型的参数,增加训练次数等,或者使用其他的优化方法
- 代码里面用了一个Dropout的技巧,大致意思是在每个批量训练过程中,对每个节点,不论是在输入层,还是隐藏层,都有独立的概率让节点变成0
- 这样的好处是,每次批量训练相当于在不同的小神经网络中进行计算,当训练数据大的时候,每个节点的权重都会被调整多次
- 在每次训练的时候,系统会努力在有限的节点和小神经网络中找到最佳的权重,这样可以最大化的找到重要特征,避免过度拟合,这就是为什么Dropout会得到广泛的应用
相关文章:
卷积神经网络训练情感分析
文章目录 1 CNN在自然语言的典型应用2 代码解释3 建议 1 CNN在自然语言的典型应用 卷积的作用在于利用文字的局部特征,一个词的前后几个词必然和这个词本身相关,这组成该词所代表的词群词群进而会对段落文字的意思进行影响,决定这个段落到底…...
github新建项目
参考链接:Github上建立新项目超详细方法过程 在这里新建一个repositories 接下来就选择相关的信息: 然后create a new就行了 接下来需要创建文件:(同时通过upload上传文件) 每次最多上传100个文件,然后保…...
CRC(循环冗余校验)直接计算和查表法
文章目录 CRC概述CRC名词解释宽度 (WIDTH)多项式 (POLY)初始值 (INIT)结果异或值 (XOROUT)输入数据反转(REFIN)输出数据反转(REFOUT) CRC手算过程模二加减&am…...
【算法思考记录】力扣2952. 需要添加的硬币的最小数量【C++,思路挖掘,贪心与证明】
原题链接 文章目录 需要添加的硬币的最小数量:贪心算法实现题目概述示例分析 关键思路分析贪心算法的优化选择证明案例推演与算法实现 C 实现结论 需要添加的硬币的最小数量:贪心算法实现 题目概述 在这个困难难度的算法题中,我们要解决的…...
用友NC JiuQiClientReqDispatch反序列化RCE漏洞复现
0x01 产品简介 用友NC是一款企业级ERP软件。作为一种信息化管理工具,用友NC提供了一系列业务管理模块,包括财务会计、采购管理、销售管理、物料管理、生产计划和人力资源管理等,帮助企业实现数字化转型和高效管理。 0x02 漏洞概述 用友 NC JiuQiClientReqDispatch 接口存在…...
Linux:docker镜像的创建(5)
1.基于已有镜像创建 步骤: 1.将原始镜像加入容器并运行 2.在原始镜像中部署各种服务 3.退出容器 4.使用下面命令将容器生成新的镜像 现在我们在这个容器里做了一些配置,我们要把他做成自己镜像 docker commit -m "centos7_123" -a "tarr…...
数据结构与算法-D2D3线性表之顺序表
线性表:包含若干数据元素的一个线性序列,特征如下: 1)对非空表,a0是表头,无前驱; 2)an-1是表尾,无后继; 3)其他元素仅且仅有一个前驱,…...
01_W5500简介
目录 W5500简介: 芯片特点: 全硬件TCPIP协议栈: 引脚分布: W5500简介: W5500是一款高性价比的以太网芯片,其全球独一无二的全硬件TCPIP协议栈专利技术,解决了嵌入式以太网的接入问题,简单易用ÿ…...
异常 Exception 练习题 (未完成)
异常 Exception 练习题 try-catch异常处理1234 异常1(没有自己写)234 try-catch异常处理 1 class Exception01 {public static int method() {try {String[] names new String[3];//String[]数组if (names[1].equals("tom")) {//NullPointe…...
Linux系统编程:并发与信号总结
并发 并发是指两个或多个同时独立进行的活动。在计算机系统中,并发指的是同一个系统中多个独立活动同时进行,而非依次进行。 并发在计算机系统中的表现: 一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是…...
Jmeter 接口-加密信息发送(一百九十九)
方式1:使用函数助手 比如MD5加密方式: 如图,需要对${user}进行MD5加密 1、打开函数助手,找到MD5,输入需要加密的值 2、将${__MD5(${user},)}放到请求中 3、查看请求,请求成功 方式2:导入jar包…...
微信小程序nodejs+vue+uniapp视力保养眼镜店连锁预约系统
作为一个视力保养连锁预约的网络系统,数据流量是非常大的,所以系统的设计必须满足使用方便,操作灵活的要求。所以在设计视力保养连锁预约系统应达到以下目标: (1)界面要美观友好,检索要快捷简易…...
掌握Vue侦听器(watch)的应用
文章目录 🍁watch 的优缺点🍂Watch 优点🍂Watch 缺点 🍁watch 的用法🍂对象式 watch🍂函数式 watch 🍁代码示例🍂监听基本数据类型🍂监听复杂数据类型(Object…...
SAP-PP:PP顾问管理系统的相关建议
本博客将探讨生产计划领域的控制要点。这将有助于减少仓库库存不准确情况,因为库存不准确会导致实物库存、发货、成本核算和计划方面出现许多效率低下的问题。 在物料主数据关键字段中,必须配置计划交货时间、GR处理时间、内部生产时间、计划交货时间&a…...
Unity资源路径与读取
Unity资源路径有: 1、StreamingAssets:只读,一般用于存放应用程序运行时需要加载的资源文件,可以通过Application.streamingAssetsPath来获取。 2、PersistentDataPath:可读写,一般用于存放应用程序运行时…...
“大+小模型”赋能油气行业高质量发展
近日,中国石油石化科技创新大会暨新技术成果展在北京盛大举行,九章云极DataCanvas公司携油气行业一站式AI综合解决方案重磅亮相,充分展示了公司助推油气行业实现AI规模化应用深厚的AI技术实力和领先的AI应用水准,赢得了行业专家和…...
【win32_004】字符串处理函数
StringCbPrintf 函数 (strsafe.h):格式化字符串 STRSAFEAPI StringCbPrintf([out] STRSAFE_LPSTR pszDest,//目的缓冲区 LPSTR指针或者数组[in] size_t cbDest,//目的缓冲区大小[in] STRSAFE_LPCSTR pszFormat,//格式 例如: TEXT("%d&…...
如果不小心修改了按钮的名字并且忘记了原名字
出现上述情况,可以右边点击转到代码,注释掉问题行,此页的设计界面就恢复了。...
opencv阈值处理
阈值处理 二值化 自适应阈值 OTSU二值化...
html之JS
1、JS的引入 <!-- 内嵌 --><!-- <script>alert(4)</script> --><!-- 外引 --><!-- 内嵌和外引同时有的时候,内嵌被覆盖 --><script src"js/index.js" defer></script>//defer 延迟执行 2、js的变量使用…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)
注:文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件:STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...
未授权访问事件频发,我们应当如何应对?
在当下,数据已成为企业和组织的核心资产,是推动业务发展、决策制定以及创新的关键驱动力。然而,未授权访问这一隐匿的安全威胁,正如同高悬的达摩克利斯之剑,时刻威胁着数据的安全,一旦触发,便可…...
