当前位置: 首页 > news >正文

卷积神经网络训练情感分析

文章目录

  • 1 CNN在自然语言的典型应用
  • 2 代码解释
  • 3 建议

1 CNN在自然语言的典型应用

  • 卷积的作用在于利用文字的局部特征,一个词的前后几个词必然和这个词本身相关,这组成该词所代表的词群
  • 词群进而会对段落文字的意思进行影响,决定这个段落到底是正向,还是负向
  • 深度学习中的卷积让神经网络去构造特征
  • 下面介绍用Keras搭建卷积神经网络来处理情感分析的分类问题

2 代码解释

  • Sequential(): 这个语句初始化了一个空的顺序模型。顺序模型是线性的,意味着你可以逐层添加,每一层都按顺序连接到前一层。
    通常情况下,你会在这一行之后添加额外的代码行,以向模型中添加层。
  • Embedding: 这是 Keras 中的一个嵌入层。嵌入层通常用于将整数序列(例如文本中的单词索引)映射为密集向量的序列。在自然语言处理中,这常用于将单词嵌入到连续向量空间中。
  • vocab_size: 这是词汇表的大小,表示模型能够处理的不同单词的数量。
  • 64: 这是嵌入向量的维度,即每个单词将被嵌入到一个64维的向量空间中。
  • input_length: 这是输入序列的长度,指定了输入数据的每个样本有多少个时间步(时间步是序列中的单个元素)。在自然语言处理中,它通常对应于文本序列的最大长度。
  • 全部代码
from keras.datasets import imdb
from keras.layers import Dense,Dropout,Activation,Flatten
from keras.layers import Conv1D,MaxPooling1D
from keras.layers import Embedding
from keras.models import Sequential
from keras.preprocessing import sequence
import numpy as npmaxword = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data()
x_train = sequence.pad_sequences(x_train,maxlen=maxword)
x_test = sequence.pad_sequences(x_test,maxlen=maxword)
vocab_size = np.max([np.max(x_train[i]) for i in range(x_train.shape[0])])+1
model = Sequential()
model.add(Embedding(vocab_size,64,input_length = maxword))model.add(Conv1D(filters=64,kernel_size=3,padding='same',activation='relu'))model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))model.add(Conv1D(filters=128,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten)
model.add(Dense(64,activation='relu'))
model.add(Dense(32,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='rmsprop',epochs = 20,batch_size = 100)
scores = model.evaluate(x_test,y_test,verbose=1)
print(scores)

3 建议

  • 可以试着调整模型的参数,增加训练次数等,或者使用其他的优化方法
  • 代码里面用了一个Dropout的技巧,大致意思是在每个批量训练过程中,对每个节点,不论是在输入层,还是隐藏层,都有独立的概率让节点变成0
  • 这样的好处是,每次批量训练相当于在不同的小神经网络中进行计算,当训练数据大的时候,每个节点的权重都会被调整多次
  • 在每次训练的时候,系统会努力在有限的节点和小神经网络中找到最佳的权重,这样可以最大化的找到重要特征,避免过度拟合,这就是为什么Dropout会得到广泛的应用

相关文章:

卷积神经网络训练情感分析

文章目录 1 CNN在自然语言的典型应用2 代码解释3 建议 1 CNN在自然语言的典型应用 卷积的作用在于利用文字的局部特征,一个词的前后几个词必然和这个词本身相关,这组成该词所代表的词群词群进而会对段落文字的意思进行影响,决定这个段落到底…...

github新建项目

参考链接:Github上建立新项目超详细方法过程 在这里新建一个repositories 接下来就选择相关的信息: 然后create a new就行了 接下来需要创建文件:(同时通过upload上传文件) 每次最多上传100个文件,然后保…...

CRC(循环冗余校验)直接计算和查表法

文章目录 CRC概述CRC名词解释宽度 (WIDTH)多项式 (POLY)初始值 (INIT)结果异或值 (XOROUT)输入数据反转(REFIN)输出数据反转(REFOUT) CRC手算过程模二加减&am…...

【算法思考记录】力扣2952. 需要添加的硬币的最小数量【C++,思路挖掘,贪心与证明】

原题链接 文章目录 需要添加的硬币的最小数量:贪心算法实现题目概述示例分析 关键思路分析贪心算法的优化选择证明案例推演与算法实现 C 实现结论 需要添加的硬币的最小数量:贪心算法实现 题目概述 在这个困难难度的算法题中,我们要解决的…...

用友NC JiuQiClientReqDispatch反序列化RCE漏洞复现

0x01 产品简介 用友NC是一款企业级ERP软件。作为一种信息化管理工具,用友NC提供了一系列业务管理模块,包括财务会计、采购管理、销售管理、物料管理、生产计划和人力资源管理等,帮助企业实现数字化转型和高效管理。 0x02 漏洞概述 用友 NC JiuQiClientReqDispatch 接口存在…...

Linux:docker镜像的创建(5)

1.基于已有镜像创建 步骤: 1.将原始镜像加入容器并运行 2.在原始镜像中部署各种服务 3.退出容器 4.使用下面命令将容器生成新的镜像 现在我们在这个容器里做了一些配置,我们要把他做成自己镜像 docker commit -m "centos7_123" -a "tarr…...

数据结构与算法-D2D3线性表之顺序表

线性表:包含若干数据元素的一个线性序列,特征如下: 1)对非空表,a0是表头,无前驱; 2)an-1是表尾,无后继; 3)其他元素仅且仅有一个前驱,…...

01_W5500简介

目录 W5500简介: 芯片特点: 全硬件TCPIP协议栈: 引脚分布: W5500简介: W5500是一款高性价比的以太网芯片,其全球独一无二的全硬件TCPIP协议栈专利技术,解决了嵌入式以太网的接入问题,简单易用&#xff…...

异常 Exception 练习题 (未完成)

异常 Exception 练习题 try-catch异常处理1234 异常1(没有自己写)234 try-catch异常处理 1 class Exception01 {public static int method() {try {String[] names new String[3];//String[]数组if (names[1].equals("tom")) {//NullPointe…...

Linux系统编程:并发与信号总结

并发 并发是指两个或多个同时独立进行的活动。在计算机系统中,并发指的是同一个系统中多个独立活动同时进行,而非依次进行。 并发在计算机系统中的表现: 一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是…...

Jmeter 接口-加密信息发送(一百九十九)

方式1:使用函数助手 比如MD5加密方式: 如图,需要对${user}进行MD5加密 1、打开函数助手,找到MD5,输入需要加密的值 2、将${__MD5(${user},)}放到请求中 3、查看请求,请求成功 方式2:导入jar包…...

微信小程序nodejs+vue+uniapp视力保养眼镜店连锁预约系统

作为一个视力保养连锁预约的网络系统,数据流量是非常大的,所以系统的设计必须满足使用方便,操作灵活的要求。所以在设计视力保养连锁预约系统应达到以下目标: (1)界面要美观友好,检索要快捷简易…...

掌握Vue侦听器(watch)的应用

文章目录 🍁watch 的优缺点🍂Watch 优点🍂Watch 缺点 🍁watch 的用法🍂对象式 watch🍂函数式 watch 🍁代码示例🍂监听基本数据类型🍂监听复杂数据类型(Object…...

SAP-PP:PP顾问管理系统的相关建议

本博客将探讨生产计划领域的控制要点。这将有助于减少仓库库存不准确情况,因为库存不准确会导致实物库存、发货、成本核算和计划方面出现许多效率低下的问题。 在物料主数据关键字段中,必须配置计划交货时间、GR处理时间、内部生产时间、计划交货时间&a…...

Unity资源路径与读取

Unity资源路径有: 1、StreamingAssets:只读,一般用于存放应用程序运行时需要加载的资源文件,可以通过Application.streamingAssetsPath来获取。 2、PersistentDataPath:可读写,一般用于存放应用程序运行时…...

“大+小模型”赋能油气行业高质量发展

近日,中国石油石化科技创新大会暨新技术成果展在北京盛大举行,九章云极DataCanvas公司携油气行业一站式AI综合解决方案重磅亮相,充分展示了公司助推油气行业实现AI规模化应用深厚的AI技术实力和领先的AI应用水准,赢得了行业专家和…...

【win32_004】字符串处理函数

StringCbPrintf 函数 (strsafe.h):格式化字符串 STRSAFEAPI StringCbPrintf([out] STRSAFE_LPSTR pszDest,//目的缓冲区 LPSTR指针或者数组[in] size_t cbDest,//目的缓冲区大小[in] STRSAFE_LPCSTR pszFormat,//格式 例如: TEXT("%d&…...

如果不小心修改了按钮的名字并且忘记了原名字

出现上述情况,可以右边点击转到代码,注释掉问题行,此页的设计界面就恢复了。...

opencv阈值处理

阈值处理 二值化 自适应阈值 OTSU二值化...

html之JS

1、JS的引入 <!-- 内嵌 --><!-- <script>alert(4)</script> --><!-- 外引 --><!-- 内嵌和外引同时有的时候&#xff0c;内嵌被覆盖 --><script src"js/index.js" defer></script>//defer 延迟执行 2、js的变量使用…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...