卷积神经网络训练情感分析
文章目录
- 1 CNN在自然语言的典型应用
- 2 代码解释
- 3 建议
1 CNN在自然语言的典型应用
- 卷积的作用在于利用文字的局部特征,一个词的前后几个词必然和这个词本身相关,这组成该词所代表的词群
- 词群进而会对段落文字的意思进行影响,决定这个段落到底是正向,还是负向
- 深度学习中的卷积让神经网络去构造特征
- 下面介绍用Keras搭建卷积神经网络来处理情感分析的分类问题
2 代码解释
- Sequential(): 这个语句初始化了一个空的顺序模型。顺序模型是线性的,意味着你可以逐层添加,每一层都按顺序连接到前一层。
通常情况下,你会在这一行之后添加额外的代码行,以向模型中添加层。 - Embedding: 这是 Keras 中的一个嵌入层。嵌入层通常用于将整数序列(例如文本中的单词索引)映射为密集向量的序列。在自然语言处理中,这常用于将单词嵌入到连续向量空间中。
- vocab_size: 这是词汇表的大小,表示模型能够处理的不同单词的数量。
- 64: 这是嵌入向量的维度,即每个单词将被嵌入到一个64维的向量空间中。
- input_length: 这是输入序列的长度,指定了输入数据的每个样本有多少个时间步(时间步是序列中的单个元素)。在自然语言处理中,它通常对应于文本序列的最大长度。
- 全部代码
from keras.datasets import imdb
from keras.layers import Dense,Dropout,Activation,Flatten
from keras.layers import Conv1D,MaxPooling1D
from keras.layers import Embedding
from keras.models import Sequential
from keras.preprocessing import sequence
import numpy as npmaxword = 400
(x_train,y_train),(x_test,y_test) = imdb.load_data()
x_train = sequence.pad_sequences(x_train,maxlen=maxword)
x_test = sequence.pad_sequences(x_test,maxlen=maxword)
vocab_size = np.max([np.max(x_train[i]) for i in range(x_train.shape[0])])+1
model = Sequential()
model.add(Embedding(vocab_size,64,input_length = maxword))model.add(Conv1D(filters=64,kernel_size=3,padding='same',activation='relu'))model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))model.add(Conv1D(filters=128,kernel_size=3,padding='same',activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten)
model.add(Dense(64,activation='relu'))
model.add(Dense(32,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='rmsprop',epochs = 20,batch_size = 100)
scores = model.evaluate(x_test,y_test,verbose=1)
print(scores)
3 建议
- 可以试着调整模型的参数,增加训练次数等,或者使用其他的优化方法
- 代码里面用了一个Dropout的技巧,大致意思是在每个批量训练过程中,对每个节点,不论是在输入层,还是隐藏层,都有独立的概率让节点变成0
- 这样的好处是,每次批量训练相当于在不同的小神经网络中进行计算,当训练数据大的时候,每个节点的权重都会被调整多次
- 在每次训练的时候,系统会努力在有限的节点和小神经网络中找到最佳的权重,这样可以最大化的找到重要特征,避免过度拟合,这就是为什么Dropout会得到广泛的应用
相关文章:
卷积神经网络训练情感分析
文章目录 1 CNN在自然语言的典型应用2 代码解释3 建议 1 CNN在自然语言的典型应用 卷积的作用在于利用文字的局部特征,一个词的前后几个词必然和这个词本身相关,这组成该词所代表的词群词群进而会对段落文字的意思进行影响,决定这个段落到底…...
github新建项目
参考链接:Github上建立新项目超详细方法过程 在这里新建一个repositories 接下来就选择相关的信息: 然后create a new就行了 接下来需要创建文件:(同时通过upload上传文件) 每次最多上传100个文件,然后保…...
CRC(循环冗余校验)直接计算和查表法
文章目录 CRC概述CRC名词解释宽度 (WIDTH)多项式 (POLY)初始值 (INIT)结果异或值 (XOROUT)输入数据反转(REFIN)输出数据反转(REFOUT) CRC手算过程模二加减&am…...
【算法思考记录】力扣2952. 需要添加的硬币的最小数量【C++,思路挖掘,贪心与证明】
原题链接 文章目录 需要添加的硬币的最小数量:贪心算法实现题目概述示例分析 关键思路分析贪心算法的优化选择证明案例推演与算法实现 C 实现结论 需要添加的硬币的最小数量:贪心算法实现 题目概述 在这个困难难度的算法题中,我们要解决的…...
用友NC JiuQiClientReqDispatch反序列化RCE漏洞复现
0x01 产品简介 用友NC是一款企业级ERP软件。作为一种信息化管理工具,用友NC提供了一系列业务管理模块,包括财务会计、采购管理、销售管理、物料管理、生产计划和人力资源管理等,帮助企业实现数字化转型和高效管理。 0x02 漏洞概述 用友 NC JiuQiClientReqDispatch 接口存在…...
Linux:docker镜像的创建(5)
1.基于已有镜像创建 步骤: 1.将原始镜像加入容器并运行 2.在原始镜像中部署各种服务 3.退出容器 4.使用下面命令将容器生成新的镜像 现在我们在这个容器里做了一些配置,我们要把他做成自己镜像 docker commit -m "centos7_123" -a "tarr…...
数据结构与算法-D2D3线性表之顺序表
线性表:包含若干数据元素的一个线性序列,特征如下: 1)对非空表,a0是表头,无前驱; 2)an-1是表尾,无后继; 3)其他元素仅且仅有一个前驱,…...
01_W5500简介
目录 W5500简介: 芯片特点: 全硬件TCPIP协议栈: 引脚分布: W5500简介: W5500是一款高性价比的以太网芯片,其全球独一无二的全硬件TCPIP协议栈专利技术,解决了嵌入式以太网的接入问题,简单易用ÿ…...
异常 Exception 练习题 (未完成)
异常 Exception 练习题 try-catch异常处理1234 异常1(没有自己写)234 try-catch异常处理 1 class Exception01 {public static int method() {try {String[] names new String[3];//String[]数组if (names[1].equals("tom")) {//NullPointe…...
Linux系统编程:并发与信号总结
并发 并发是指两个或多个同时独立进行的活动。在计算机系统中,并发指的是同一个系统中多个独立活动同时进行,而非依次进行。 并发在计算机系统中的表现: 一个时间段中有几个程序都处于已启动运行到运行完毕之间,且这几个程序都是…...
Jmeter 接口-加密信息发送(一百九十九)
方式1:使用函数助手 比如MD5加密方式: 如图,需要对${user}进行MD5加密 1、打开函数助手,找到MD5,输入需要加密的值 2、将${__MD5(${user},)}放到请求中 3、查看请求,请求成功 方式2:导入jar包…...
微信小程序nodejs+vue+uniapp视力保养眼镜店连锁预约系统
作为一个视力保养连锁预约的网络系统,数据流量是非常大的,所以系统的设计必须满足使用方便,操作灵活的要求。所以在设计视力保养连锁预约系统应达到以下目标: (1)界面要美观友好,检索要快捷简易…...
掌握Vue侦听器(watch)的应用
文章目录 🍁watch 的优缺点🍂Watch 优点🍂Watch 缺点 🍁watch 的用法🍂对象式 watch🍂函数式 watch 🍁代码示例🍂监听基本数据类型🍂监听复杂数据类型(Object…...
SAP-PP:PP顾问管理系统的相关建议
本博客将探讨生产计划领域的控制要点。这将有助于减少仓库库存不准确情况,因为库存不准确会导致实物库存、发货、成本核算和计划方面出现许多效率低下的问题。 在物料主数据关键字段中,必须配置计划交货时间、GR处理时间、内部生产时间、计划交货时间&a…...
Unity资源路径与读取
Unity资源路径有: 1、StreamingAssets:只读,一般用于存放应用程序运行时需要加载的资源文件,可以通过Application.streamingAssetsPath来获取。 2、PersistentDataPath:可读写,一般用于存放应用程序运行时…...
“大+小模型”赋能油气行业高质量发展
近日,中国石油石化科技创新大会暨新技术成果展在北京盛大举行,九章云极DataCanvas公司携油气行业一站式AI综合解决方案重磅亮相,充分展示了公司助推油气行业实现AI规模化应用深厚的AI技术实力和领先的AI应用水准,赢得了行业专家和…...
【win32_004】字符串处理函数
StringCbPrintf 函数 (strsafe.h):格式化字符串 STRSAFEAPI StringCbPrintf([out] STRSAFE_LPSTR pszDest,//目的缓冲区 LPSTR指针或者数组[in] size_t cbDest,//目的缓冲区大小[in] STRSAFE_LPCSTR pszFormat,//格式 例如: TEXT("%d&…...
如果不小心修改了按钮的名字并且忘记了原名字
出现上述情况,可以右边点击转到代码,注释掉问题行,此页的设计界面就恢复了。...
opencv阈值处理
阈值处理 二值化 自适应阈值 OTSU二值化...
html之JS
1、JS的引入 <!-- 内嵌 --><!-- <script>alert(4)</script> --><!-- 外引 --><!-- 内嵌和外引同时有的时候,内嵌被覆盖 --><script src"js/index.js" defer></script>//defer 延迟执行 2、js的变量使用…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
