MySQL之锁
MySQL之锁
锁是计算机在执行多线程或线程时用于并发访问同一共享资源时的同步机制,MySQL中的锁是在服务器层或者存储引擎层实现的,保证了数据访问的一致性与有效性
MySQL锁可以按模式分类为:乐观锁与悲观锁。
按粒度分可以分为全局锁、表级锁、页级锁、行级锁按属性可以分为:共享锁(读锁/S锁)、排它锁(写锁/X锁)
按状态分为:意向共享锁、意向排它锁
按算法分为:间隙锁、临键锁、记录锁。
全局锁
全局锁就是对整个数据库实例加锁
应用场景
一般用与数据备份 全库导出等全库操作
实现方式
Flush tables with read lock
当你需要让整个库处于只读状态的时候,可以使用这个命令,之后其他线程的以下语句会被阻塞:数据更新语句(数据的增删改)、数据定义语句(包括建表、修改表结构等)和更新类事务的提交语句
风险:
如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就能停止。
如果在从库上备份,那么备份期间从库不能执行主库同步过来的binlog,会导致主从延迟
解决办法:
mysqldump使用参数–single-transaction,启动一个事务,确保拿到一致性视图。而由于MVCC的支持,这个过程中数据是可以正常更新的
表锁
当前操作的整张表加锁,最常使用的 MyISAM 与 InnoDB 都支持表级锁定。
MySQL 里面表级别的锁有两种:一种是表锁,一种是元数据锁(meta data lock,MDL)
应用场景
读操作密集,写操作少,全表更新删除
实现方式
lock tables … read/write
例如lock tables t1 read, t2 write; 命令,则其他线程写 t1、读写 t2 的语句都会被阻塞。同时,线程 A 在执行 unlock tables 之前,也只能执行读 t1、读写 t2 的操作。连写 t1 都不允许,自然也不能在unlock tables之前访问其他表
元数据锁:
MDL 不需要显式使用,在访问一个表的时候会被自动加上,在 MySQL 5.5 版本中引入了 MDL,当对一个表做增删改查操作的时候,加 MDL读锁;当要对表做结构变更操作的时候,加 MDL 写锁
MDL 是在事务提交后才会释放,这意味着事务执行期间,MDL 是一直持有的
风险:
那如果数据库有一个长事务(所谓的长事务,就是开启了事务,但是一直还没提交),那在对表结构做变更操作的时候,可能会发生意想不到的事情,比如下面这个顺序的场景:
- 首先,线程 A 先启用了事务(但是一直不提交),然后执行一条 select 语句,此时就先对该表加上 MDL 读锁;
- 然后,线程 B 也执行了同样的 select 语句,此时并不会阻塞,因为「读读」并不冲突;
- 接着,线程 C 修改了表字段,此时由于线程 A 的事务并没有提交,也就是 MDL 读锁还在占用着,这时线程 C 就无法申请到 MDL 写锁,就会被阻塞
- 那么在线程 C 阻塞后,后续有对该表的 select 语句,就都会被阻塞,如果此时有大量该表的 select 语句的请求到来,就会有大量的线程被阻塞住,这时数据库的线程很快就会爆满了。
为什么线程 C 因为申请不到 MDL 写锁,而导致后续的申请读锁的查询操作也会被阻塞?
这是因为申请 MDL 锁的操作会形成一个队列,队列中写锁获取优先级高于读锁,一旦出现 MDL 写锁等待,会阻塞后续该表的所有 CRUD 操作。
解决方案:
所以为了能安全的对表结构进行变更,在对表结构变更前,先要看看数据库中的长事务,是否有事务已经对表加上了 MDL 读锁,如果可以考虑 kill 掉这个长事务,然后再做表结构的变更。
意向锁
- 在使用 InnoDB 引擎的表里对某些记录加上「共享锁」之前,需要先在表级别加上一个「意向共享锁」;
- 在使用 InnoDB 引擎的表里对某些纪录加上「独占锁」之前,需要先在表级别加上一个「意向独占锁」;
也就是,当执行插入、更新、删除操作,需要先对表加上「意向独占锁」,然后对该记录加独占锁。
如果没有「意向锁」,那么加「独占表锁」时,就需要遍历表里所有记录,查看是否有记录存在独占锁,这样效率会很慢。
那么有了「意向锁」,由于在对记录加独占锁前,先会加上表级别的意向独占锁,那么在加「独占表锁」时,直接查该表是否有意向独占锁,如果有就意味着表里已经有记录被加了独占锁,这样就不用去遍历表里的记录。
所以,意向锁的目的是为了快速判断表里是否有记录被加锁
AUTO-INC锁
表里的主键通常都会设置成自增的,这是通过对主键字段声明
AUTO_INCREMENT
属性实现的。之后可以在插入数据时,可以不指定主键的值,数据库会自动给主键赋值递增的值,这主要是通过 AUTO-INC 锁实现的。
AUTO-INC 锁是特殊的表锁机制,锁不是再一个事务提交后才释放,而是再执行完插入语句后就会立即释放。在插入数据时,会加一个表级别的 AUTO-INC 锁,然后为被
AUTO_INCREMENT
修饰的字段赋值递增的值,等插入语句执行完成后,才会把 AUTO-INC 锁释放掉。那么,一个事务在持有 AUTO-INC 锁的过程中,其他事务的如果要向该表插入语句都会被阻塞,从而保证插入数据时,被
AUTO_INCREMENT
修饰的字段的值是连续递增的。但是, AUTO-INC 锁再对大量数据进行插入的时候,会影响插入性能,因为另一个事务中的插入会被阻塞。
因此, 在 MySQL 5.1.22 版本开始,InnoDB 存储引擎提供了一种轻量级的锁来实现自增。
那么,一个事务在持有 AUTO-INC 锁的过程中,其他事务的如果要向该表插入语句都会被阻塞,从而保证插入数据时,被
AUTO_INCREMENT
修饰的字段的值是连续递增的。但是, AUTO-INC 锁再对大量数据进行插入的时候,会影响插入性能,因为另一个事务中的插入会被阻塞。
因此, 在 MySQL 5.1.22 版本开始,InnoDB 存储引擎提供了一种轻量级的锁来实现自增。
行锁
InnoDB 引擎是支持行级锁的,而 MyISAM 引擎并不支持行级锁。
前面也提到,普通的 select 语句是不会对记录加锁的,因为它属于快照读。如果要在查询时对记录加行锁,可以使用下面这两个方式,这种查询会加锁的语句称为锁定读。
//对读取的记录加共享锁
select ... lock in share mode;//对读取的记录加独占锁
select ... for update;
上面这两条语句必须在一个事务中,因为当事务提交了,锁就会被释放,所以在使用这两条语句的时候,要加上 begin、start transaction 或者 set autocommit = 0
行级锁的类型主要有三类:
- Record Lock,记录锁,也就是仅仅把一条记录锁上;
针对行数据加锁,锁住的是一条记录。而且记录锁是有 S 锁和 X 锁之分的:
- 当一个事务对一条记录加了 S 型记录锁后,其他事务也可以继续对该记录加 S 型记录锁(S 型与 S 锁兼容),但是不可以对该记录加 X 型记录锁(S 型与 X 锁不兼容);
- 当一个事务对一条记录加了 X 型记录锁后,其他事务既不可以对该记录加 S 型记录锁(S 型与 X 锁不兼容),也不可以对该记录加 X 型记录锁(X 型与 X 锁不兼容)。
- Gap Lock,间隙锁,锁定一个范围,但是不包含记录本身;
Gap Lock 称为间隙锁,只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象假设,表中有一个范围 id 为(3,5)间隙锁,那么其他事务就无法插入 id = 4 这条记录了,这样就有效的防止幻读现象的发生。
间隙锁虽然存在 X 型间隙锁和 S 型间隙锁,但是并没有什么区别,间隙锁之间是兼容的,即两个事务可以同时持有包含共同间隙范围的间隙锁,并不存在互斥关系,因为间隙锁的目的是防止插入幻影记录而提出的。
- Next-Key Lock:Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。
Next-Key Lock 称为临键锁,是 Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。
假设,表中有一个范围 id 为(3,5] 的 next-key lock,那么其他事务即不能插入 id = 4 记录,也不能修改 id = 5 这条记录。所以,next-key lock 即能保护该记录,又能阻止其他事务将新纪录插入到被保护记录前面的间隙中。
next-key lock 是包含间隙锁+记录锁的,如果一个事务获取了 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,是会被阻塞的。
比如,一个事务持有了范围为 (1, 10] 的 X 型的 next-key lock,那么另外一个事务在获取相同范围的 X 型的 next-key lock 时,就会被阻塞。
虽然相同范围的间隙锁是多个事务相互兼容的,但对于记录锁,我们是要考虑 X 型与 S 型关系,X 型的记录锁与 X 型的记录锁是冲突的。
一个事务在插入一条记录的时候,需要判断插入位置是否已被其他事务加了间隙锁(next-key lock 也包含间隙锁)。
如果有的话,插入操作就会发生阻塞,直到拥有间隙锁的那个事务提交为止(释放间隙锁的时刻),在此期间会生成一个插入意向锁,表明有事务想在某个区间插入新记录,但是现在处于等待状态。
举个例子,假设事务 A 已经对表加了一个范围 id 为(3,5)间隙锁。
当事务 A 还没提交的时候,事务 B 向该表插入一条 id = 4 的新记录,这时会判断到插入的位置已经被事务 A 加了间隙锁,于是事物 B 会生成一个插入意向锁,然后将锁的状态设置为等待状态(PS:MySQL 加锁时,是先生成锁结构,然后设置锁的状态,如果锁状态是等待状态,并不是意味着事务成功获取到了锁,只有当锁状态为正常状态时,才代表事务成功获取到了锁),此时事务 B 就会发生阻塞,直到事务 A 提交了事务。插入意向锁名字虽然有意向锁,但是它并不是意向锁,它是一种特殊的间隙锁,属于行级别锁。
如果说间隙锁锁住的是一个区间,那么「插入意向锁」锁住的就是一个点。因而从这个角度来说,插入意向锁确实是一种特殊的间隙锁。
插入意向锁与间隙锁的另一个非常重要的差别是:尽管「插入意向锁」也属于间隙锁,但两个事务却不能在同一时间内,一个拥有间隙锁,另一个拥有该间隙区间内的插入意向锁(当然,插入意向锁如果不在间隙锁区间内则是可以的)。
页级锁
页级锁是 MySQL 中比较独特的一种锁定级别,在其他数据库管理软件中并不常见。
页级锁的颗粒度介于行级锁与表级锁之间,所以获取锁定所需要的资源开销,以及所能提供的并发处理能力同样也是介于上面二者之间。另外,页级锁和行级锁一样,会发生死锁。
页级锁主要应用于 BDB 存储引擎。
乐观锁
乐观锁是相对悲观锁而言的,乐观锁假设数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则返回给用户错误的信息,让用户决定如何去做。
应用场景
适用于读多写少,因为如果出现大量的写操作,写冲突的可能性就会增大,业务层需要不断重试,会大大降低系统性能。
实现方式
一般使用数据版本(Version)记录机制实现,在数据库表中增加一个数字类型的“version”字段来实现。当读取数据时,将version字段的值一同读出,数据每更新一次,对此version值加一。当我们提交更新的时候,判断数据库表对应记录的当前版本信息与第一次取出来的version值进行比对,如果数据库表当前版本号与第一次取出来的version值相等,则予以更新,否则认为是过期数据。
悲观锁
悲观锁,正如其名,具有强烈的独占和排他特性,每次去拿数据的时候都认为别人会修改,对数据被外界(包括本系统当前的其他事务,以及来自外部系统的事务处理)修改持保守态度,因此,在整个数据处理过程中,将数据处于锁定状态。
应用场景
适用于并发量不大、写入操作比较频繁、数据一致性比较高的场景。
实现方式
在MySQL中使用悲观锁,必须关闭MySQL的自动提交,set autocommit=0。共享锁和排它锁是悲观锁的不同的实现,它俩都属于悲观锁的范畴。
死锁
两个事务都持有对方需要的锁并等待对方释放,且双方都不会释放自己的锁
产生死锁的必要条件
- 两个或者两个以上的事务
- 两个事务都持有锁并申请新的锁
- 锁资源同时只能被同一个事务持有或者不兼容
- 事务之间因为持有锁和申请锁而互相等待
如何处理死锁
- 等待直至超时
当两个事务中有一个事务设置时间超过等待时间的阈值就将其回滚,另外事务进行;
innodb中innodb_lock_wait_timeout设置超时时间
但这个超时时间对于在线服务是不可接受的,过大会导致在等待时间其他线程无法访问资源进入长时间等待状态;过短容易误伤短时间锁的等待
- 进行死锁检测
死锁检测原理是构建一个以事务为顶点,锁为边的有向图,判断图中是否存在环,存在即有死锁
一旦检测到死锁,innodb会选择回滚undo量最小的事务,让其他事务继续进行
如何避免死锁
- 合理设置索引,使业务SQL尽量定位更少的行减少锁的竞争
- 调整业务逻辑SQL执行顺序,避免update/delete长时间持有锁的SQL在事务前面
- 避免大事务,尽量大事务拆解成多个小事务进行,小事务减少资源锁定的时间,发生锁冲突的情况更少
- 降低隔离级别。如果业务允许,将隔离级别从RR降低到RC,可以减少因为gap锁造成的死锁
锁的内存结构
锁所在的事务信息
不论是表锁还是行锁都是在事务执行的过程中生成的,所以我们需要记录生成锁的事务信息,通过指针可以在内存中快速找到事务的信息
索引信息
对于行锁来说,需要记录一下加锁的记录是属于哪个索引的,也是一个指针
表锁/行锁信息
表锁记录对加锁表信息的记录
行锁记录:
space_id 记录所在表空间
page_num 页号
n_bits 对于行锁来说,一条记录对应着一个比特位,一个页面中包含很多记录,用不同的比特位来区别哪一条记录加了锁
type_mode
lock_mode
lock_type
rec_lock_type
其他信息
为了更好的管理系统运行中生成的各种锁结构设计的各种哈希表和链表
相关文章:
MySQL之锁
MySQL之锁 锁是计算机在执行多线程或线程时用于并发访问同一共享资源时的同步机制,MySQL中的锁是在服务器层或者存储引擎层实现的,保证了数据访问的一致性与有效性 MySQL锁可以按模式分类为:乐观锁与悲观锁。 按粒度分可以分为全局锁、表级锁…...
今日现货黄金最新建议
近期现货黄金价格再度逼近历史高位,很多本来在场外观望的投资者,都纷纷希望进场一试身手。然而大涨大跌的行情并不是很适合新手投资者参与,如果大家还没做好技术上的准备,可以多听听正规交易平台的专业人士的意见。 在正式入市之前…...
基于混沌算法的图像加密解密系统
1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义: 随着信息技术的迅猛发展,图像的传输和存储已经成为现代社会中不可或缺的一部分。然而,随着互联网的普及和信息的快速传播&am…...
vscode插件离线下载
离线下载插件地址:https://marketplace.visualstudio.com/VSCode...
第二十一章总结
一、网络通信: 1.网络程序设计基础:网络程序设计编写的是与其他计算机进行通信的程序。 1.1局域网与互联网:为了实现两台计算机的通信,必须用一个网络线路连接两台计算机 2.网络协议:网络协议规定了计算机之间连接的…...
查看端口占用并杀死进程
1.安装查看工具 sudo yum install net-tools 2.查看占用情况 netstat -tunlp | grep 8089 3.杀死进程 kill -9 227...
前后端数据传输格式(上)
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 作为后端,写…...
maven的package和install命令有什么区别以及Maven常用命令与GAV坐标与Maven依赖范围与Maven依赖传递与依赖排除与统一声明版本号
maven的package和install命令有什么区别以及Maven常用命令与GAV坐标与Maven依赖范围与Maven依赖传递与依赖排除与统一声明版本号 一: maven的package和install命令有什么区别 一般都与clean命令结合使用 mvn package 生成target目录,编译、测试代码,…...
【动手学深度学习】(六)权重衰退
文章目录 一、理论知识二、代码实现2.1从零开始实现2.2简洁实现 【相关总结】 主要解决过拟合 一、理论知识 1、使用均方范数作为硬性限制(不常用) 通过限制参数值的选择范围来控制模型容量 通常不限制偏移b 小的意味着更强的正则项 使用均方范数作为柔…...
动手学习深度学习-跟李沐学AI-自学笔记(3)
一、深度学习硬件-CPU和GPU 芯片:Intel or AMD 内存:DDR4 显卡:nVidia 芯片可以和GPU与内存通信 GPU不能和内存通信 1. CPU 能算出每一秒能运算的浮点运算数(大概0.15左右) 1.1 提升CPU利用率 1.1.1 提升缓存…...
3.2 Puppet 和 Chef 的比较与应用
Puppet 和 Chef 的比较与应用 文章目录 Puppet 和 Chef 的比较与应用Puppet 和 Chef 简介工作原理对比**模块化的重要性**: Puppet 和 Chef 简介 介绍 Puppet 和 Chef 这两个流行的配置管理工具的背景和用途。强调它们的共同目标:实现自动化的系统配置和…...
promise使用示例
下面是一个 Promise 使用示例,通过 Promise 实现异步操作的链式调用: const getUser (userId) > {return new Promise((resolve, reject) > {// 模拟异步请求setTimeout(() > {const users [{ id: 1, name: Alice },{ id: 2, name: Bob },{ …...
一起学docker系列之十四Dockerfile微服务实践
目录 1 前言2 创建微服务模块2.1 **创建项目模块**2.2 **编写业务代码** 3 编写 Dockerfile4 构建 Docker 镜像5 运行 Docker 容器6 测试微服务7 总结8 参考地址 1 前言 微服务架构已经成为现代软件开发中的一种重要方式。而 Docker 提供了一种轻量级、便携式的容器化解决方案…...
Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2
Qt Creator 11.0.3同时使用Qt6.5和Qt5.14.2 概要方法1.打开Qt Creator中的Kit,这里我直接附上几张截图,不同的版本打开位置可能有所不同,总之最终目的是要打开构建套件(Kit)2.可以看到构建套件里面有包含了“构建套件K…...
Python中字符串列表的相互转换详解
更多资料获取 📚 个人网站:ipengtao.com 在Python编程中,经常会遇到需要将字符串列表相互转换的情况。这涉及到将逗号分隔的字符串转换为列表,或者将列表中的元素连接成一个字符串。本文将深入讨论这些情景,并提供丰富…...
09、pytest多种调用方式
官方用例 # content of myivoke.py import sys import pytestclass MyPlugin:def pytest_sessionfinish(self):print("*** test run reporting finishing")if __name__ "__main__":sys.exit(pytest.main(["-qq"],plugins[MyPlugin()]))# conte…...
分布式锁常见实现方案
分布式锁常见实现方案 基于 Redis 实现分布式锁 如何基于 Redis 实现一个最简易的分布式锁? 不论是本地锁还是分布式锁,核心都在于“互斥”。 在 Redis 中, SETNX 命令是可以帮助我们实现互斥。SETNX 即 SET if Not eXists (对应 Java 中…...
26、pytest使用allure解读
官方实例 # content of pytest_quick_start_test.py import allurepytestmark [allure.epic("My first epic"), allure.feature("Quick start feature")]allure.id(1) allure.story("Simple story") allure.title("test_allure_simple_te…...
Uncle Maker: (Time)Stamping Out The Competition in Ethereum
目录 笔记后续的研究方向摘要引言贡献攻击的简要概述 Uncle Maker: (Time)Stamping Out The Competition in Ethereum CCS 2023 笔记 本文对以太坊 1 的共识机制进行了攻击,该机制允许矿工获得比诚实同行更高的挖矿奖励。这种名为“Uncle Maker”的攻击操纵区块时间…...
浅谈可重入与线程安全
文章目录 可重入与线程安全的关系 可重入 若一个程序或子程序可以“在任意时刻被中断然后操作系统调度执行另一段代码,这段代码又使用了该副程序不会出错”,则称其为可重入(reentrant 或 re-entrant)的。即当该副程序正在运作时&…...
深入理解TDD(测试驱动开发):提升代码质量的利器
在日常的软件开发工作中,我们常常会遇到这样的问题:如何在繁忙的项目进度中,保证我们的代码质量?如何在不断的迭代更新中,避免引入新的错误?对此,有一种有效的开发方式能帮助我们解决这些问题&a…...
pyqt5使用pyqtgraph实现动态热力图
pyqt5使用pyqtgraph实现动态热力图 一、效果图 二、流程 1、打开Designer创建一个UI界面 2、把UI转成py 3、创建一个main.py文件 4、在main文件中渲染画布、创建初始数据、画热力图、创建更新数据线程、绑定按钮触发事件三、UI界面 其中h_map.py代码如下: # -*- coding: ut…...
【android开发-16】android中文件和sharedpreferences数据存储详解
1,文件读写方式的数据存储 下面是一个简单的示例,演示如何在Android中使用内部存储来保存和读取文件: 保存文件: try { String data "这是要保存的数据"; FileOutputStream fos openFileOutput("myFile"…...
《当代家庭教育》期刊论文投稿发表简介
《当代家庭教育》杂志是家庭的参谋和助手,社会的桥梁和纽带,人生的伴侣和知音,事业的良师益友。 国家新闻出版总署批准的正规省级教育类G4期刊,知网、维普期刊网收录。安排基础教育相关稿件,适用于评职称时的论文发表…...
【操作教程】如何将外省医保转入广州市区(医保转移接续手续办理)?
登录(可以用微信扫码采用粤省事账号登录,没有粤省事小程序账号的可以自主申请很方便)广东政务服务网https://www.gdzwfw.gov.cn/ 这里不得不吐槽官网开发者,太拉胯了,居然有undefined,多刷新几次就好了&…...
【分布式系统学习】CAP原理详解
CAP原理详解 前言CAP一张图 一、概念1.1 关键词解读1.2 关于CAP(拆分解读)1.3 CAP原理精髓 二、CAP模拟场景举例理解三、CAP原理证明为什么不能同时满足(下面举例说明)3.1 必须满足分区容错性P下的处理方式3.2 不是必须满足分区容…...
【聚类】K-modes和K-prototypes——适合离散数据的聚类方法
应用场景: 假设一批数据,每一个样本中,有唯一标识(id)、品类(cate_id)、受众(users, 小孩、老人、中年等)等属性,希望从其中找出一些样本,使得这…...
Python-炸弹人【附完整源码】
炸弹人 炸弹人是童年的一款经典电子游戏,玩家控制一个类似"炸弹人"的角色,这个角色可以放置炸弹,并在指定的时间内引爆它们消灭敌人以达到目标,此游戏共设有两节关卡,代码如下: 运行效果&#x…...
[英语学习][5][Word Power Made Easy]的精读与翻译优化
[序言] 今日完成第18页的阅读, 发现大量的翻译错误以及不准确. 需要分两篇文章进行讲解. [英文学习的目标] 提升自身的英语水平, 对日后编程技能的提升有很大帮助. 希望大家这次能学到东西, 同时加入我的社区讨论与交流英语相关的内容. [原著英文与翻译版对照][第18页] Wh…...
Apache Doris 详细教程(一)
1、Doris简介 1.1、doris概述 Apache Doris 由百度大数据部研发(之前叫百度 Palo,2018 年贡献到 Apache 社区后, 更名为 Doris ),在百度内部,有超过 200 个产品线在使用,部署机器超过 1000 台…...
wordpress主题大前端dux去授权/免费网站制作成品
什么是守护线程 守护线程的作用是为用户线程提供服务的,且仅在用户线程运行时才需要。当所有用户线程完成执行后,JVM就会终止,也就是说,守护线程会自动退出。但是守护线程并不是 100% 不能阻止 JVM 退出的。守护线程中设计不良的…...
殡葬网站建设/whois查询
JEPF软件快速开发平台学习心得之请假单功能的完成(一)首先我也是点一次接触这个软件快速开发平台,我在学习这个平台的同时简单记录下我对这个平台是如何一步步熟悉或者是上手的,也有简单的一点总结和学习心得,希望对你…...
个人网站建设方案书/360排名检测
<?php header("content-type:text/html;charsetutf-8"); /*** 栈的顺序存储结构的基本操作**包括* 1.顺序栈的初始化 __contruct()* 2.销毁栈 destroyStack()* 3.清空栈 clearStack()* 4.判断栈是否为空 stackEmpty()* 5.获取栈顶元素 getTop()* 6.进栈操作 push…...
徐州建设网站/企业培训课程ppt
文章目录单体架构实例分析与比较单体架构优点单体架构缺点改进微服务服务注册服务访问分布式集群单体架构实例 在Idea里新建一个SpringBoot项目, 这里选择SpringBoot 的版本依赖是 2.0.3.RELEASE。 依赖 pom.xml如下: <?xml version"1.0&quo…...
找人做任务网站有哪些/搜索引擎的工作原理是什么
首先需要在群晖的 Docker 中选择 Image,然后选择添加。 输入 Docker HUB 的地址 在弹出的对话框中输入 Docker Hub 的地址。 MongoDB 的地址为: Docker Hub 然后选择添加。 选择版本和运行 在后续的界面中,要求选择版本,我们选…...
做服装外单的网站有哪些/广东网络优化推广
1 [rootok /]# cat /proc/sys/net/ipv4/tcp_keepalive_time 2 72003 如果在该参数指定时间内某条连接处于空闲状态,则内核向远程主机发起探测4 [rootok /]# cat /proc/sys/net/ipv4/tcp_keepalive_intvl 5 756 内核向远程主机发送的保活探测的时间间隔7 [rootok /]#…...