当前位置: 首页 > news >正文

企业网站优化费用/襄阳网站推广优化技巧

企业网站优化费用,襄阳网站推广优化技巧,可以做护考题目的网站,wordpress 编辑器目录 一、单机限流 1、令牌桶算法 3、固定窗口限流算法 4、滑动窗口 二、集群限流 1、分布式固定窗口 (基于redis) 2、分布式滑动窗口 一、单机限流 1、令牌桶算法 令牌桶算法是当流量进入系统前需要获取令牌,没有令牌那么就要进行限…

目录

一、单机限流

1、令牌桶算法

3、固定窗口限流算法

4、滑动窗口

二、集群限流

1、分布式固定窗口 (基于redis)

2、分布式滑动窗口


一、单机限流

1、令牌桶算法

令牌桶算法是当流量进入系统前需要获取令牌,没有令牌那么就要进行限流

这个算法是怎么实现的呢

  1. 定义一个后台协程按照一定的频率去产生token

  2. 后台协程产生的token 放到固定大小容器里面

  3. 有流量进入系统尝试拿到token,没有token 就需要限流了


type TokenBucketLimiter struct {token chan struct{}stop  chan struct{}
}
​
func NewTokenBucket(capactity int, timeInternal time.Duration) *TokenBucketLimiter {te := make(chan struct{}, capactity)stop := make(chan struct{})ticker := time.NewTicker(timeInternal)go func() {defer ticker.Stop()for {select {case <-ticker.C:select {case te <- struct{}{}:default:
​}case <-stop:return}}}()return &TokenBucketLimiter{token: te,stop:  stop,}
}
​
func (t *TokenBucketLimiter) BuildServerInterceptor() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {select {case <-ctx.Done():err = ctx.Err()returncase <-t.token:return handler(ctx, req)case <-t.stop:err = errors.New("缺乏保护")return}}
}
​
func (t *TokenBucketLimiter) Stop() {close(t.stop)
}

3、固定窗口限流算法

什么是固定窗口限流算法

固定窗口限流算法(Fixed Window Rate Limiting Algorithm)是一种最简单的限流算法,其原理是在固定时间窗口(单位时间)内限制请求的数量。该算法将时间分成固定的窗口,并在每个窗口内限制请求的数量。具体来说,算法将请求按照时间顺序放入时间窗口中,并计算该时间窗口内的请求数量,如果请求数量超出了限制,则拒绝该请求。

优点:实现简单

缺点:对于瞬时流量没发处理,也就是临界问题,比如下图在20t前后,在16t以及26t有大量流量进来,在这10t中,已经超过了流量限制,没法限流

实现如下

type fixWindow1 struct {lastVistTime int64vistCount    int64interval     int64maxCount     int64
}
​
func NewfixWindow1(macCount int64) *fixWindow1 {t := &fixWindow1{maxCount: macCount,}return t
}
​
func (f *fixWindow1) FixWindow1() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {current := time.Now().UnixNano()lasttime := atomic.LoadInt64(&f.lastVistTime)if lasttime+f.interval > current {if atomic.CompareAndSwapInt64(&f.lastVistTime, lasttime, current) {atomic.StoreInt64(&f.lastVistTime, current)atomic.StoreInt64(&f.maxCount, 0)}}count := atomic.AddInt64(&f.vistCount, 1)if count > f.maxCount {return gen.GetByIDResp{}, errors.New("触发限流")}return handler(ctx, req)}
}

4、滑动窗口

什么是滑动窗口算法:

滑动窗口限流算法是一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题

type slideWindow struct {
timeWindow *list.Listinterval   int64maxCnt     intlock       sync.Mutex
}
​
func NewSlideWindow(interval time.Duration, maxCnt int) *slideWindow {t := &slideWindow{timeWindow: list.New(),interval:   interval.Nanoseconds(),maxCnt:     maxCnt,}return t
}
​
func (s *slideWindow) SlideWinowlimit() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {s.lock.Lock()now := time.Now().UnixNano()// 快路径if s.timeWindow.Len() < s.maxCnt {resp, err = handler(ctx, req)s.timeWindow.PushBack(now)s.lock.Unlock()return}front := s.timeWindow.Front()for front != nil && front.Value.(int64)+s.interval < now {s.timeWindow.Remove(front)front = s.timeWindow.Front()}if s.timeWindow.Len() >= s.maxCnt {s.lock.Unlock()return &gen.GetByIdReq{}, errors.New("触发限流")}s.lock.Unlock()resp, err = handler(ctx, req)s.timeWindow.PushBack(now)return}
}

二、集群限流

下面是分布式限流,为啥是分布式限流,单机限流只能对单台服务器进行限流,没发对集权进行限流,需要用分布式限流来进行集权限流

1、分布式固定窗口 (基于redis)
type redisFix struct {
serName  stringinterVal intlimitCnt intredis    redis.Cmdable
}
​
//go:embed lua/fixwindow.lua
var lua_redis_fix string
​
func NewRedisFix(serName string, interval int, limitCnt int, redis redis.Cmdable) *redisFix {t := &redisFix{serName:  serName,interVal: interval,limitCnt: limitCnt,redis:    redis,}return t
}
​
func (r *redisFix) RedisFix() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {res, err := r.limit(ctx)if err != nil {return &gen.GetByIDResp{}, err}if res {return &gen.GetByIdReq{}, errors.New("触发限流")}return handler(ctx, req)}
}
​
func (r *redisFix) limit(ctx context.Context) (res bool, err error) {keys := []string{r.serName}res, err = r.redis.Eval(ctx, lua_redis_fix, keys, r.interVal, r.limitCnt).Bool()return
}

lua

local key = KEYS[1]

local limitCnt = tonumber(ARGV[2])
local val = redis.call('get',key)
if val==false thenif limitCnt<1 thenreturn "true"elseredis.call('set',key,1,'PX',ARGV[1])return "false"end
elseif tonumber(val)<limitCnt thenredis.call('incr',key)return "false"
elsereturn "true"
end
2、分布式滑动窗口
//go:embed lua/slidewindow.lua

var slideWindLua string
​
type redisSlib struct {serverName stringinterVal   time.DurationmaxCnt     int64redis      redis.Cmdable
}
​
func NewRedisSlib(interval time.Duration, maxCnt int64, serverName string, clientCmd redis.Cmdable) *redisSlib {t := &redisSlib{serverName: serverName,interVal:   interval,maxCnt:     maxCnt,redis:      clientCmd,}return t
}
​
func (r *redisSlib) RedisSlibLimt() grpc.UnaryServerInterceptor {return func(ctx context.Context, req any, info *grpc.UnaryServerInfo, handler grpc.UnaryHandler) (resp any, err error) {limt, err := r.limt(ctx)if err != nil {return nil, err}if limt {return nil, errors.New("限流")}return handler(ctx, req)}
}
​
func (r *redisSlib) limt(ctx context.Context) (bool, error) {now := time.Now().UnixMilli()return r.redis.Eval(ctx, slideWindLua, []string{r.serverName}, r.interVal.Milliseconds(), r.maxCnt, now).Bool()
}

lua

local key = KEYS[1]
local window = tonumber(ARGV[1])
local maxCnt = tonumber(ARGV[2])
local now = tonumber(ARGV[3])
​
--- 窗口的最小边界
local min = now-window
​
redis.call('ZREMRANGEBYSCORE',key,'-inf',min)
​
local cnt = redis.call('ZCOUNT',key,'-inf','+inf')
​
if cnt>=maxCnt thenreturn "true"
elseredis.call('ZADD',key,now,now)redis.call('PEXPIRE',key,window)return "false"
end

相关文章:

限流算法,基于go的gRPC 实现的

目录 一、单机限流 1、令牌桶算法 3、固定窗口限流算法 4、滑动窗口 二、集群限流 1、分布式固定窗口 &#xff08;基于redis&#xff09; 2、分布式滑动窗口 一、单机限流 1、令牌桶算法 令牌桶算法是当流量进入系统前需要获取令牌&#xff0c;没有令牌那么就要进行限…...

Shell中HTTP变量和文本处理

在Shell中&#xff0c;HTTP变量和文本处理是常见的任务之一。Shell是一个命令行解释器&#xff0c;可以用来自动化执行各种系统任务。在Shell中&#xff0c;我们可以使用各种命令和工具来处理HTTP变量和文本。 首先&#xff0c;让我们来看看如何在Shell中处理HTTP变量。HTTP变…...

java学习part39map

159-集合框架-Map不同实现类的对比与HashMap中元素的特点_哔哩哔哩_bilibili 1.Map 2.Entry 个人理解是c的pair&#xff0c;代表一个键值对。Map就是entry的叠加 3.常用方法 4.TreeMap 5.Properties...

使用sqoop操作HDFS与MySQL之间的数据互传

一&#xff0c;数据从HDFS中导出至MySQL中 1&#xff09;开启Hadoop、mysql进程 start-all.sh/etc/init.d/mysqld start/etc/init.d/mysqld status 2&#xff09;将学生数据stu_data.csv传到HDFS的/local_student目录下 在hdfs中创建目录 hdfs dfs -mkdir /local_student 上…...

Kafka使用指南

Kafka简介架构设计Kafka的架构设计关键概念Kafka的架构设计关键机制 Partition介绍Partition工作机制 应用场景ACK机制介绍ACK机制原理ACK机制对性能的影响ACK控制粒度Kafka分区数对集群性能影响调整分区优化集群性能拓展Kafka数据全局有序 Kafka简介 Kafka是由Apache软件基金…...

HarmonyOS4.0从零开始的开发教程03初识ArkTS开发语言(中)

HarmonyOS&#xff08;二&#xff09;初识ArkTS开发语言&#xff08;中&#xff09;之TypeScript入门 浅析ArkTS的起源和演进 1 引言 Mozilla创造了JS&#xff0c;Microsoft创建了TS&#xff0c;Huawei进一步推出了ArkTS。 从最初的基础的逻辑交互能力&#xff0c;到具备类…...

西工大计算机学院计算机系统基础实验一(函数编写1~10)

还是那句话&#xff0c;千万不要慌&#xff0c;千万不要着急&#xff0c;耐下性子慢慢来&#xff0c;一步一个脚印&#xff0c;把基础打的牢牢的&#xff0c;一样不比那些人差。回到实验本身&#xff0c;自从​​​​​​按照西工大计算机学院计算机系统基础实验一&#xff08;…...

VMware 虚拟机 电脑重启后 NAT 模式连不上网络问题修复

问题描述&#xff1a; 昨天 VMware 安装centos7虚拟机&#xff0c;网络模式配置的是NAT模式&#xff0c;配置好后&#xff0c;当时能连上外网&#xff0c;今天电脑重启后&#xff0c;发现连不上外网了 检查下各个配置&#xff0c;都没变动&#xff0c;突然就连不上了 网上查了…...

【桑基图】绘制桑基图

绘制桑基图 一、绘制桑基图&#xff08;1&#xff09;方法一&#xff1a;去在线网站直接绘制&#xff08;2&#xff09;方法二&#xff1a;写html之后在vscode上运行 二、遇到的问题&#xff08;1&#xff09;当导入一些excel的时候&#xff0c;无法绘制出桑基图 一、绘制桑基图…...

ACM32F403/F433 12 位多通道,支持 MPU 存储保护功能,应用于工业控制,智能家居等产品中

ACM32F403/F433 芯片的内核基于 ARMv8-M 架构&#xff0c;支持 Cortex-M33 和 Cortex-M4F 指令集。芯片内核 支持一整套DSP指令用于数字信号处理&#xff0c;支持单精度FPU处理浮点数据&#xff0c;同时还支持Memory Protection Unit &#xff08;MPU&#xff09;用于提升应用的…...

7. 从零用Rust编写正反向代理, HTTP及TCP内网穿透原理及运行篇

wmproxy wmproxy是由Rust编写&#xff0c;已实现http/https代理&#xff0c;socks5代理&#xff0c; 反向代理&#xff0c;静态文件服务器&#xff0c;内网穿透&#xff0c;配置热更新等&#xff0c; 后续将实现websocket代理等&#xff0c;同时会将实现过程分享出来&#xff…...

UE4.27-UE5.1设置打包Android环境

打包Android配置文件 1. 配置打包Android的SDK需求文件位于下面文件中&#xff1a; 2. 指定了对应的SDK环境变量名字以及NDK需求等&#xff1a; UE4.27-UE5.1--脚本自动配置 安装前提 1. 务必关闭虚幻编辑器和Epic Games Launcher&#xff0c;以确保NDK组件的安装或引擎环境…...

MySQL授权密码

mysql> crate databases school charcter set utf8; Query OK, 1 row affected, 1 warning (0.00 sec) 2.在school数据库中创建Student和Score表 mysql> use school Database changed mysql> create table student-> -> (id int(10) primary key auto_incremen…...

0X05

打开题目 点击完登录和注册都没有什么反应&#xff0c;所以先扫一下看看 在出现admin.php后就截止了&#xff0c;访问看看,进入后台。。 尝试一下弱口令 admin/12345 或者是demo/demo 设计中-自定义->右上角导出主题 找到一个导出的点&#xff0c;下载了一个1.zip压缩包…...

Doris优化总结

1 查看QueryProfile 利用查询执行的统计结果,可以更好的帮助我们了解Doris的执行情况,并有针对性的进行相应Debug与调优工作。 FE将查询计划拆分成为Fragment下发到BE进行任务执行。BE在执行Fragment时记录了运行状态时的统计值,并将Fragment执行的统计信息输出到日志之中。…...

案例059:基于微信小程序的在线投稿系统

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…...

利用STM32内置Bootloader实现USB DFU固件升级

本文将介绍如何利用STM32内置的Bootloader来实现USB DFU&#xff08;Device Firmware Upgrade&#xff09;固件升级功能。首先&#xff0c;我们会介绍USB DFU的原理和工作流程。然后&#xff0c;我们将详细讲解如何配置STM32芯片以支持USB DFU&#xff0c;并提供相应的代码示例…...

Centos7如何安装MySQL

目录 一、卸载mysql 二、安装mysql 注&#xff1a;本文主要是看了这位大佬安装MySQL&#xff0c;才想着写一篇记录一下。 一、卸载mysql 安装mysql之前一定要将之前安装的mysql相关文件删除干净&#xff0c;防止出现错误。 &#xff08;1&#xff09;关闭mysql 开启了mysql就…...

VR远程带看,助力线下门店线上化转型“自救”

VR远程带看&#xff0c;因自身高效的沉浸式在线沟通功能&#xff0c;逐渐走进了大众的视野。身临其境的线上漫游体验以及实时同屏互联的新型交互模式&#xff0c;提升了商家同用户之间的沟通效率&#xff0c;进一步实现了远程线上一对一、一对多的同屏带看&#xff0c;用户足不…...

算法通关村第十七关-白银挑战贪心算法高频题目

大家好我是苏麟 , 今天说说贪心算法的高频题目 . 大纲 区间问题判断区间是否重叠合并区间插入区间 区间问题 判断区间是否重叠 描述 : 给定一个会议时间安排的数组 intervals &#xff0c;每个会议时间都会包括开始和结束的时间intervalsl[i] [start, end] &#xff0c;请你…...

【数据结构】动态规划(Dynamic Programming)

一.动态规划&#xff08;DP&#xff09;的定义&#xff1a; 求解决策过程&#xff08;decision process&#xff09;最优化的数学方法。 将多阶段决策过程转化为一系列单阶段问题&#xff0c;利用各阶段之间的关系&#xff0c;逐个求解。 二.动态规划的基本思想&#xff1a; …...

Redis key过期删除机制实现分析

文章目录 前言Redis key过期淘汰机制惰性删除机制定时扫描删除机制 前言 当我们创建Redis key时&#xff0c;可以通过expire命令指定key的过期时间(TTL)&#xff0c;当超过指定的TTL时间后&#xff0c;key将会失效。 那么当key失效后&#xff0c;Redis会立刻将其删除么&#…...

ElasticSearch 谈谈分词与倒排索引的原理

ElasticSearch是一个基于Lucene的搜索服务器。Lucene是Java的一个全文检索工具包&#xff0c;而ElasticSearch则是一个分布式搜索和分析引擎。下面&#xff0c;我们将详细讨论ElasticSearch中的分词和倒排索引的原理。 分词&#xff1a; 在ElasticSearch中&#xff0c;分词是…...

【Java】Java8重要特性——Lambda函数式编程以及Stream流对集合数据的操作

【Java】Java8重要特性——Lambda函数式编程以及Stream流对集合数据的操作 前言Lambda函数式编程Stream流对集合数据操作&#xff08;一&#xff09;创建Stream流&#xff08;二&#xff09;中间操作之filter&#xff08;三&#xff09;中间操作之map&#xff08;四&#xff09…...

大话数据结构-查找-散列表查找(哈希表)

注&#xff1a;本文同步发布于稀土掘金。 8 散列表查找&#xff08;哈希表&#xff09; 8.1 定义 散列技术是在记录的存储位置和它的关键字之间建立一个确定的对应关系f&#xff0c;使得每个关键字key对应一个存储位置f(key)。查找时&#xff0c;根据这个确定的对应关系找到给…...

持续集成交付CICD:Sonarqube自动更新项目质量配置

目录 一、实验 1.Sonarqube手动自定义质量规则并指定项目 2.Sonarqube自动更新项目质量配置 一、实验 1.Sonarqube手动自定义质量规则并指定项目 &#xff08;1&#xff09;自定义质量规则 ①新配置 ②更多激活规则③根据需求激活相应规则④已新增配置 ⑤ 查看 &#x…...

Linux设置Docker自动创建Nginx容器脚本

文章目录 前言一、本地新建脚本二、复制本地脚本到服务器三、执行服务器脚本总结如有启发&#xff0c;可点赞收藏哟~ 前言 一、本地新建脚本 在本地新建nginx-generator.sh脚本文件&#xff0c;并保存以下内容 主要动态定义两个变量&#xff08;容器名称/服务器本地文件名、端…...

技术博客:Vue中各种混淆用法汇总

技术博客&#xff1a;Vue中各种混淆用法汇总 摘要 本文主要介绍了在Vue中使用的一些常见混淆用法&#xff0c;包括new Vue()、export default {}、createApp()、Vue.component、Vue3注册全局组件、Vue.use()等&#xff0c;以及如何使用混淆器对代码进行加固&#xff0c;保护应…...

【python】Python生成GIF动图,多张图片转动态图,pillow

pip install pillow 示例代码&#xff1a; from PIL import Image, ImageSequence# 图片文件名列表 image_files [car.png, detected_map.png, base64_image_out.png]# 打开图片 images [Image.open(filename) for filename in image_files]# 设置输出 GIF 文件名 output_g…...

python/matlab图像去雾/去雨综述

图像去雾和去雨是计算机视觉领域的两个重要任务&#xff0c;旨在提高图像质量和可视化效果。本文将综述图像去雾和去雨的算法、理论以及相关项目代码示例。 一、图像去雾算法 基于暗通道先验的方法&#xff1a; 这是广泛应用于图像去雾的经典算法之一。该方法基于一个观察&…...