当前位置: 首页 > news >正文

【Go语言反射reflect】

Go语言反射reflect

一、引入

先看官方Doc中Rob Pike给出的关于反射的定义:

Reflection in computing is the ability of a program to examine its own structure, particularly through types; it’s a form of metaprogramming. It’s also a great source of confusion.
(在计算机领域,反射是一种让程序——主要是通过类型——理解其自身结构的一种能力。它是元编程的组成之一,同时它也是一大引人困惑的难题。)

维基百科中的定义:

在计算机科学中,反射是指计算机程序在运行时(Run time)可以访问、检测和修改它本身状态或行为的一种能力。用比喻来说,反射就是程序在运行的时候能够“观察”并且修改自己的行为。

不同语言的反射模型不尽相同,有些语言还不支持反射。《Go 语言圣经》中是这样定义反射的:

Go 语言提供了一种机制在运行时更新变量和检查它们的值、调用它们的方法,但是在编译时并不知道这些变量的具体类型,这称为反射机制。

为什么要用反射

需要反射的 2 个常见场景:

  1. 有时你需要编写一个函数,但是并不知道传给你的参数类型是什么,可能是没约定好;也可能是传入的类型很多,这些类型并不能统一表示。这时反射就会用的上了。
  2. 有时候需要根据某些条件决定调用哪个函数,比如根据用户的输入来决定。这时就需要对函数和函数的参数进行反射,在运行期间动态地执行函数。

但是对于反射,还是有几点不太建议使用反射的理由:

  1. 与反射相关的代码,经常是难以阅读的。在软件工程中,代码可读性也是一个非常重要的指标。
  2. Go 语言作为一门静态语言,编码过程中,编译器能提前发现一些类型错误,但是对于反射代码是无能为力的。所以包含反射相关的代码,很可能会运行很久,才会出错,这时候经常是直接 panic,可能会造成严重的后果。
  3. 反射对性能影响还是比较大的,比正常代码运行速度慢一到两个数量级。所以,对于一个项目中处于运行效率关键位置的代码,尽量避免使用反射特性。

二、相关基础

反射是如何实现的?我们以前学习过 interface,它是 Go 语言实现抽象的一个非常强大的工具。当向接口变量赋予一个实体类型的时候,接口会存储实体的类型信息,反射就是通过接口的类型信息实现的,反射建立在类型的基础上。

Go 语言在 reflect 包里定义了各种类型,实现了反射的各种函数,通过它们可以在运行时检测类型的信息、改变类型的值。在进行更加详细的了解之前,我们需要重新温习一下Go语言相关的一些特性,所谓温故知新,从这些特性中了解其反射机制是如何使用的。

特点说明
go语言是静态类型语言。编译时类型已经确定,比如对已基本数据类型的再定义后的类型,反射时候需要确认返回的是何种类型。
空接口interface{}go的反射机制是要通过接口来进行的,而类似于Java的Object的空接口可以和任何类型进行交互,因此对基本数据类型等的反射也直接利用了这一特点

Go语言的类型:

  • 变量包括(type, value)两部分

    ​ 理解这一点就知道为什么nil != nil了

  • type 包括 static type和concrete type. 简单来说 static type是你在编码是看见的类型(如int、string),concrete type是runtime系统看见的类型

  • 类型断言能否成功,取决于变量的concrete type,而不是static type。因此,一个 reader变量如果它的concrete type也实现了write方法的话,它也可以被类型断言为writer。

Go是静态类型语言。每个变量都拥有一个静态类型,这意味着每个变量的类型在编译时都是确定的:int,float32, *AutoType, []byte, chan []int 诸如此类。

在反射的概念中, 编译时就知道变量类型的是静态类型;运行时才知道一个变量类型的叫做动态类型。

  • 静态类型
    静态类型就是变量声明时的赋予的类型。比如:
type MyInt int // int 就是静态类型type A struct{Name string  // string就是静态
}
var i *int  // *int就是静态类型
  • 动态类型
    动态类型:运行时给这个变量赋值时,这个值的类型(如果值为nil的时候没有动态类型)。一个变量的动态类型在运行时可能改变,这主要依赖于它的赋值(前提是这个变量是接口类型)。
var A interface{} // 静态类型interface{}
A = 10            // 静态类型为interface{}  动态为int
A = "String"      // 静态类型为interface{}  动态为string
var M *int
A = M             // A的值可以改变

Go语言的反射就是建立在类型之上的,Golang的指定类型的变量的类型是静态的(也就是指定int、string这些的变量,它的type是static type),在创建变量的时候就已经确定,反射主要与Golang的interface类型相关(它的type是concrete type),只有interface类型才有反射一说。

在Golang的实现中,每个interface变量都有一个对应pair,pair中记录了实际变量的值和类型:

(value, type)

value是实际变量值,type是实际变量的类型。一个interface{}类型的变量包含了2个指针,一个指针指向值的类型【对应concrete type】,另外一个指针指向实际的值【对应value】。

例如,创建类型为*os.File的变量,然后将其赋给一个接口变量r:

tty, err := os.OpenFile("/dev/tty", os.O_RDWR, 0)var r io.Reader
r = tty

接口变量r的pair中将记录如下信息:(tty, *os.File),这个pair在接口变量的连续赋值过程中是不变的,将接口变量r赋给另一个接口变量w:

var w io.Writer
w = r.(io.Writer)

接口变量w的pair与r的pair相同,都是:(tty, *os.File),即使w是空接口类型,pair也是不变的。

interface及其pair的存在,是Golang中实现反射的前提,理解了pair,就更容易理解反射。反射就是用来检测存储在接口变量内部(值value;类型concrete type) pair对的一种机制。

所以我们要理解两个基本概念 Type 和 Value,它们也是 Go语言包中 reflect 空间里最重要的两个类型。

三、Type和Value

我们一般用到的包是reflect包。

既然反射就是用来检测存储在接口变量内部(值value;类型concrete type) pair对的一种机制。那么在Golang的reflect反射包中有什么样的方式可以让我们直接获取到变量内部的信息呢? 它提供了两种类型(或者说两个方法)让我们可以很容易的访问接口变量内容,分别是reflect.ValueOf() 和 reflect.TypeOf(),看看官方的解释

// ValueOf returns a new Value initialized to the concrete value
// stored in the interface i.  ValueOf(nil) returns the zero 
func ValueOf(i interface{}) Value {...}翻译一下:ValueOf用来获取输入参数接口中的数据的值,如果接口为空则返回0// TypeOf returns the reflection Type that represents the dynamic type of i.
// If i is a nil interface value, TypeOf returns nil.
func TypeOf(i interface{}) Type {...}翻译一下:TypeOf用来动态获取输入参数接口中的值的类型,如果接口为空则返回nil

reflect.TypeOf()是获取pair中的type,reflect.ValueOf()获取pair中的value。

首先需要把它转化成reflect对象(reflect.Type或者reflect.Value,根据不同的情况调用不同的函数。

t := reflect.TypeOf(i) //得到类型的元数据,通过t我们能获取类型定义里面的所有元素
v := reflect.ValueOf(i) //得到实际的值,通过v我们获取存储在里面的值,还可以去改变值

示例代码:

package mainimport ("fmt""reflect"
)func main() {//反射操作:通过反射,可以获取一个接口类型变量的 类型和数值var x float64 =3.4fmt.Println("type:",reflect.TypeOf(x)) //type: float64fmt.Println("value:",reflect.ValueOf(x)) //value: 3.4fmt.Println("-------------------")//根据反射的值,来获取对应的类型和数值v := reflect.ValueOf(x)fmt.Println("kind is float64: ",v.Kind() == reflect.Float64)fmt.Println("type : ",v.Type())fmt.Println("value : ",v.Float())
}

运行结果:

type: float64
value: 3.4
-------------------
kind is float64:  true
type :  float64
value :  3.4

说明

  1. reflect.TypeOf: 直接给到了我们想要的type类型,如float64、int、各种pointer、struct 等等真实的类型
  2. reflect.ValueOf:直接给到了我们想要的具体的值,如1.2345这个具体数值,或者类似&{1 “Allen.Wu” 25} 这样的结构体struct的值
  3. 也就是说明反射可以将“接口类型变量”转换为“反射类型对象”,反射类型指的是reflect.Type和reflect.Value这两种

Type 和 Value 都包含了大量的方法,其中第一个有用的方法应该是 Kind,这个方法返回该类型的具体信息:Uint、Float64 等。Value 类型还包含了一系列类型方法,比如 Int(),用于返回对应的值。以下是Kind的种类:

// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uintconst (Invalid Kind = iotaBoolIntInt8Int16Int32Int64UintUint8Uint16Uint32Uint64UintptrFloat32Float64Complex64Complex128ArrayChanFuncInterfaceMapPtrSliceStringStructUnsafePointer
)

四、反射的规则

其实反射的操作步骤非常的简单,就是通过实体对象获取反射对象(Value、Type),然后操作相应的方法即可。

下图描述了实例、Value、Type 三者之间的转换关系:

在这里插入图片描述

反射 API 的分类总结如下:

1) 从实例到 Value

通过实例获取 Value 对象,直接使用 reflect.ValueOf() 函数。例如:

func ValueOf(i interface {}) Value

2) 从实例到 Type

通过实例获取反射对象的 Type,直接使用 reflect.TypeOf() 函数。例如:

func TypeOf(i interface{}) Type

3) 从 Type 到 Value

Type 里面只有类型信息,所以直接从一个 Type 接口变量里面是无法获得实例的 Value 的,但可以通过该 Type 构建一个新实例的 Value。reflect 包提供了两种方法,示例如下:

//New 返回的是一个 Value,该 Value 的 type 为 PtrTo(typ),即 Value 的 Type 是指定 typ 的指针类型
func New(typ Type) Value
//Zero 返回的是一个 typ 类型的零佳,注意返回的 Value 不能寻址,位不可改变
func Zero(typ Type) Value

如果知道一个类型值的底层存放地址,则还有一个函数是可以依据 type 和该地址值恢复出 Value 的。例如:

func NewAt(typ Type, p unsafe.Pointer) Value

4) 从 Value 到 Type

从反射对象 Value 到 Type 可以直接调用 Value 的方法,因为 Value 内部存放着到 Type 类型的指针。例如:

func (v Value) Type() Type

5) 从 Value 到实例

Value 本身就包含类型和值信息,reflect 提供了丰富的方法来实现从 Value 到实例的转换。例如:

//该方法最通用,用来将 Value 转换为空接口,该空接口内部存放具体类型实例
//可以使用接口类型查询去还原为具体的类型
func (v Value) Interface() (i interface{})//Value 自身也提供丰富的方法,直接将 Value 转换为简单类型实例,如果类型不匹配,则直接引起 panic
func (v Value) Bool () bool
func (v Value) Float() float64
func (v Value) Int() int64
func (v Value) Uint() uint64

6) 从 Value 的指针到值

从一个指针类型的 Value 获得值类型 Value 有两种方法,示例如下。

//如果 v 类型是接口,则 Elem() 返回接口绑定的实例的 Value,如采 v 类型是指针,则返回指针值的 Value,否则引起 panic
func (v Value) Elem() Value
//如果 v 是指针,则返回指针值的 Value,否则返回 v 自身,该函数不会引起 panic
func Indirect(v Value) Value

7) Type 指针和值的相互转换

指针类型 Type 到值类型 Type。例如:

//t 必须是 Array、Chan、Map、Ptr、Slice,否则会引起 panic
//Elem 返回的是其内部元素的 Type
t.Elem() Type

值类型 Type 到指针类型 Type。例如:

//PtrTo 返回的是指向 t 的指针型 Type
func PtrTo(t Type) Type

8) Value 值的可修改性

Value 值的修改涉及如下两个方法:

//通过 CanSet 判断是否能修改
func (v Value ) CanSet() bool
//通过 Set 进行修改
func (v Value ) Set(x Value)

Value 值在什么情况下可以修改?我们知道实例对象传递给接口的是一个完全的值拷贝,如果调用反射的方法 reflect.ValueOf() 传进去的是一个值类型变量, 则获得的 Value 实际上是原对象的一个副本,这个 Value 是无论如何也不能被修改的。

根据 Go 官方关于反射的博客,反射有三大定律:

  1. Reflection goes from interface value to reflection object.
  2. Reflection goes from reflection object to interface value.
  3. To modify a reflection object, the value must be settable.

第一条是最基本的:反射可以从接口值得到反射对象。

​ 反射是一种检测存储在 interface中的类型和值机制。这可以通过 TypeOf函数和 ValueOf函数得到。

第二条实际上和第一条是相反的机制,反射可以从反射对象获得接口值。

​ 它将 ValueOf的返回值通过 Interface()函数反向转变成 interface变量。

前两条就是说 接口型变量和 反射类型对象可以相互转化,反射类型对象实际上就是指的前面说的 reflect.Type和 reflect.Value。

第三条不太好懂:如果需要操作一个反射变量,则其值必须可以修改。

​ 反射变量可设置的本质是它存储了原变量本身,这样对反射变量的操作,就会反映到原变量本身;反之,如果反射变量不能代表原变量,那么操作了反射变量,不会对原变量产生任何影响,这会给使用者带来疑惑。所以第二种情况在语言层面是不被允许的。

五、反射的使用

5.1 从relfect.Value中获取接口interface的信息

当执行reflect.ValueOf(interface)之后,就得到了一个类型为”relfect.Value”变量,可以通过它本身的Interface()方法获得接口变量的真实内容,然后可以通过类型判断进行转换,转换为原有真实类型。不过,我们可能是已知原有类型,也有可能是未知原有类型,因此,下面分两种情况进行说明。

已知原有类型

已知类型后转换为其对应的类型的做法如下,直接通过Interface方法然后强制转换,如下:

realValue := value.Interface().(已知的类型)

示例代码:

package mainimport ("fmt""reflect"
)func main() {var num float64 = 1.2345pointer := reflect.ValueOf(&num)value := reflect.ValueOf(num)// 可以理解为“强制转换”,但是需要注意的时候,转换的时候,如果转换的类型不完全符合,则直接panic// Golang 对类型要求非常严格,类型一定要完全符合// 如下两个,一个是*float64,一个是float64,如果弄混,则会panicconvertPointer := pointer.Interface().(*float64)convertValue := value.Interface().(float64)fmt.Println(convertPointer)fmt.Println(convertValue)
}

运行结果:

0xc000098000
1.2345

说明

  1. 转换的时候,如果转换的类型不完全符合,则直接panic,类型要求非常严格!
  2. 转换的时候,要区分是指针还是指
  3. 也就是说反射可以将“反射类型对象”再重新转换为“接口类型变量”
未知原有类型

很多情况下,我们可能并不知道其具体类型,那么这个时候,该如何做呢?需要我们进行遍历探测其Filed来得知,示例如下:

package mainimport ("fmt""reflect"
)type Person struct {Name stringAge intSex string
}func (p Person)Say(msg string)  {fmt.Println("hello,",msg)
}
func (p Person)PrintInfo()  {fmt.Printf("姓名:%s,年龄:%d,性别:%s\n",p.Name,p.Age,p.Sex)
}func main() {p1 := Person{"王二狗",30,"男"}DoFiledAndMethod(p1)}// 通过接口来获取任意参数
func DoFiledAndMethod(input interface{}) {getType := reflect.TypeOf(input) //先获取input的类型fmt.Println("get Type is :", getType.Name()) // Personfmt.Println("get Kind is : ", getType.Kind()) // structgetValue := reflect.ValueOf(input)fmt.Println("get all Fields is:", getValue) //{王二狗 30 男}// 获取方法字段// 1. 先获取interface的reflect.Type,然后通过NumField进行遍历// 2. 再通过reflect.Type的Field获取其Field// 3. 最后通过Field的Interface()得到对应的valuefor i := 0; i < getType.NumField(); i++ {field := getType.Field(i)value := getValue.Field(i).Interface() //获取第i个值fmt.Printf("字段名称:%s, 字段类型:%s, 字段数值:%v \n", field.Name, field.Type, value)}// 通过反射,操作方法// 1. 先获取interface的reflect.Type,然后通过.NumMethod进行遍历// 2. 再公国reflect.Type的Method获取其Methodfor i := 0; i < getType.NumMethod(); i++ {method := getType.Method(i)fmt.Printf("方法名称:%s, 方法类型:%v \n", method.Name, method.Type)}
}

运行结果:

get Type is : Person
get Kind is :  struct
get all Fields is: {王二狗 30 男}
字段名称:Name, 字段类型:string, 字段数值:王二狗 
字段名称:Age, 字段类型:int, 字段数值:30 
字段名称:Sex, 字段类型:string, 字段数值:男 
方法名称:PrintInfo, 方法类型:func(main.Person) 
方法名称:Say, 方法类型:func(main.Person, string) 

说明

通过运行结果可以得知获取未知类型的interface的具体变量及其类型的步骤为:

  1. 先获取interface的reflect.Type,然后通过NumField进行遍历
  2. 再通过reflect.Type的Field获取其Field
  3. 最后通过Field的Interface()得到对应的value

通过运行结果可以得知获取未知类型的interface的所属方法(函数)的步骤为:

  1. 先获取interface的reflect.Type,然后通过NumMethod进行遍历
  2. 再分别通过reflect.Type的Method获取对应的真实的方法(函数)
  3. 最后对结果取其Name和Type得知具体的方法名
  4. 也就是说反射可以将“反射类型对象”再重新转换为“接口类型变量”
  5. struct 或者 struct 的嵌套都是一样的判断处理方式

如果是struct的话,可以使用Elem()

tag := t.Elem().Field(0).Tag //获取定义在struct里面的Tag属性
name := v.Elem().Field(0).String() //获取存储在第一个字段里面的值

5.2 通过reflect.Value设置实际变量的值

reflect.Value是通过reflect.ValueOf(X)获得的,只有当X是指针的时候,才可以通过reflec.Value修改实际变量X的值,即:要修改反射类型的对象就一定要保证其值是“addressable”的。

这里需要一个方法:

在这里插入图片描述

解释起来就是:Elem返回接口v包含的值或指针v指向的值。如果v的类型不是interface或ptr,它会恐慌。如果v为零,则返回零值。

package mainimport ("fmt""reflect"
)func main() {var num float64 = 1.2345fmt.Println("old value of pointer:", num)// 通过reflect.ValueOf获取num中的reflect.Value,注意,参数必须是指针才能修改其值pointer := reflect.ValueOf(&num)newValue := pointer.Elem()fmt.Println("type of pointer:", newValue.Type())fmt.Println("settability of pointer:", newValue.CanSet())// 重新赋值newValue.SetFloat(77)fmt.Println("new value of pointer:", num)// 如果reflect.ValueOf的参数不是指针,会如何?//pointer = reflect.ValueOf(num)//newValue = pointer.Elem() // 如果非指针,这里直接panic,“panic: reflect: call of reflect.Value.Elem on float64 Value”
}

运行结果:

old value of pointer: 1.2345
type of pointer: float64
settability of pointer: true
new value of pointer: 77

说明

  1. 需要传入的参数是* float64这个指针,然后可以通过pointer.Elem()去获取所指向的Value,注意一定要是指针
  2. 如果传入的参数不是指针,而是变量,那么
    • 通过Elem获取原始值对应的对象则直接panic
    • 通过CanSet方法查询是否可以设置返回false
  3. newValue.CantSet()表示是否可以重新设置其值,如果输出的是true则可修改,否则不能修改,修改完之后再进行打印发现真的已经修改了。
  4. reflect.Value.Elem() 表示获取原始值对应的反射对象,只有原始对象才能修改,当前反射对象是不能修改的
  5. 也就是说如果要修改反射类型对象,其值必须是“addressable”【对应的要传入的是指针,同时要通过Elem方法获取原始值对应的反射对象】
  6. struct 或者 struct 的嵌套都是一样的判断处理方式

5.3 通过reflect.Value来进行方法的调用

这算是一个高级用法了,前面我们只说到对类型、变量的几种反射的用法,包括如何获取其值、其类型、以及如何重新设置新值。但是在项目应用中,另外一个常用并且属于高级的用法,就是通过reflect来进行方法【函数】的调用。比如我们要做框架工程的时候,需要可以随意扩展方法,或者说用户可以自定义方法,那么我们通过什么手段来扩展让用户能够自定义呢?关键点在于用户的自定义方法是未可知的,因此我们可以通过reflect来搞定。

Call()方法:
在这里插入图片描述
** 通过反射,调用方法。**

先获取结构体对象,然后

示例代码:

package mainimport ("fmt""reflect"
)type Person struct {Name stringAge intSex string
}func (p Person)Say(msg string)  {fmt.Println("hello,",msg)
}
func (p Person)PrintInfo()  {fmt.Printf("姓名:%s,年龄:%d,性别:%s\n",p.Name,p.Age,p.Sex)
}func (p Person) Test(i,j int,s string){fmt.Println(i,j,s)
}// 如何通过反射来进行方法的调用?
// 本来可以用结构体对象.方法名称()直接调用的,
// 但是如果要通过反射,
// 那么首先要将方法注册,也就是MethodByName,然后通过反射调动mv.Callfunc main() {p2 := Person{"Ruby",30,"男"}// 1. 要通过反射来调用起对应的方法,必须要先通过reflect.ValueOf(interface)来获取到reflect.Value,// 得到“反射类型对象”后才能做下一步处理getValue := reflect.ValueOf(p2)// 2.一定要指定参数为正确的方法名// 先看看没有参数的调用方法methodValue1 := getValue.MethodByName("PrintInfo")fmt.Printf("Kind : %s, Type : %s\n",methodValue1.Kind(),methodValue1.Type())methodValue1.Call(nil) //没有参数,直接写nilargs1 := make([]reflect.Value, 0) //或者创建一个空的切片也可以methodValue1.Call(args1)// 有参数的方法调用methodValue2 := getValue.MethodByName("Say")fmt.Printf("Kind : %s, Type : %s\n",methodValue2.Kind(),methodValue2.Type())args2 := []reflect.Value{reflect.ValueOf("反射机制")}methodValue2.Call(args2)methodValue3 := getValue.MethodByName("Test")fmt.Printf("Kind : %s, Type : %s\n",methodValue3.Kind(),methodValue3.Type())args3 := []reflect.Value{reflect.ValueOf(100), reflect.ValueOf(200),reflect.ValueOf("Hello")}methodValue3.Call(args3)
}

运行结果:

Kind : func, Type : func()
姓名:Ruby,年龄:30,性别:男
姓名:Ruby,年龄:30,性别:男
Kind : func, Type : func(string)
hello, 反射机制
Kind : func, Type : func(int, int, string)
100 200 Hello

通过反射,调用函数。

首先我们要先确认一点,函数像普通的变量一样,之前的章节中我们在讲到函数的本质的时候,是可以把函数作为一种变量类型的,而且是引用类型。如果说Fun()是一个函数,那么f1 := Fun也是可以的,那么f1也是一个函数,如果直接调用f1(),那么运行的就是Fun()函数。

那么我们就先通过ValueOf()来获取函数的反射对象,可以判断它的Kind,是一个func,那么就可以执行Call()进行函数的调用。

示例代码:

package mainimport ("fmt""reflect"
)func main() {//函数的反射f1 := fun1value := reflect.ValueOf(f1)fmt.Printf("Kind : %s , Type : %s\n",value.Kind(),value.Type()) //Kind : func , Type : func()value2 := reflect.ValueOf(fun2)fmt.Printf("Kind : %s , Type : %s\n",value2.Kind(),value2.Type()) //Kind : func , Type : func(int, string)//通过反射调用函数value.Call(nil)value2.Call([]reflect.Value{reflect.ValueOf(100),reflect.ValueOf("hello")})}func fun1(){fmt.Println("我是函数fun1(),无参的。。")
}func fun2(i int, s string){fmt.Println("我是函数fun2(),有参数。。",i,s)
}

说明

  1. 要通过反射来调用起对应的方法,必须要先通过reflect.ValueOf(interface)来获取到reflect.Value,得到“反射类型对象”后才能做下一步处理
  2. reflect.Value.MethodByName这个MethodByName,需要指定准确真实的方法名字,如果错误将直接panic,MethodByName返回一个函数值对应的reflect.Value方法的名字。
  3. []reflect.Value,这个是最终需要调用的方法的参数,可以没有或者一个或者多个,根据实际参数来定。
  4. reflect.Value的 Call 这个方法,这个方法将最终调用真实的方法,参数务必保持一致,如果reflect.Value.Kind不是一个方法,那么将直接panic。
  5. 本来可以用对象访问方法直接调用的,但是如果要通过反射,那么首先要将方法注册,也就是MethodByName,然后通过反射调用methodValue.Call

本文参照:

http://www.sohu.com/a/313420275_657921

https://studygolang.com/articles/12348?fr=sidebar

http://c.biancheng.net/golang/

相关文章:

【Go语言反射reflect】

Go语言反射reflect 一、引入 先看官方Doc中Rob Pike给出的关于反射的定义&#xff1a; Reflection in computing is the ability of a program to examine its own structure, particularly through types; it’s a form of metaprogramming. It’s also a great source of …...

LC-1466. 重新规划路线(DFS、BFS)

1466. 重新规划路线 中等 n 座城市&#xff0c;从 0 到 n-1 编号&#xff0c;其间共有 n-1 条路线。因此&#xff0c;要想在两座不同城市之间旅行只有唯一一条路线可供选择&#xff08;路线网形成一颗树&#xff09;。去年&#xff0c;交通运输部决定重新规划路线&#xff0c…...

自动数据增广论文笔记 | AutoAugment: Learning Augmentation Strategies from Data

谷歌大脑出品 paper: https://arxiv.org/abs/1805.09501 这里是个论文的阅读心得&#xff0c;笔记&#xff0c;不等同论文全部内容 文章目录 一、摘要1.1 翻译1.2 笔记 二、(第3部分)自动增强:直接在感兴趣的数据集上搜索最佳增强策略2.1 翻译2.2 笔记 三、跳出论文&#xff0c…...

CTF 7

信息收集 存活主机探测 arp-scan -l 端口探测 nmap -sT --min-rate 10000 -p- 192.168.0.5 服务版本等信息 nmap -sT -sV -sC -O -p22,80,137,138,139,901,5900,8080,10000 192.168.0.5Starting Nmap 7.94 ( https://nmap.org ) at 2023-11-02 21:23 CST Stats: 0:01:30 elaps…...

无公网IP环境Windows系统使用VNC远程连接Deepin桌面

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《Linux》《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;…...

java--枚举

1.枚举 枚举是一种特殊类 2.枚举类的格式 注意&#xff1a; ①枚举类中的第一行&#xff0c;只能写一些合法的标识符(名称)&#xff0c;多个名称用逗号隔开。 ②这些名称&#xff0c;本质是常量&#xff0c;每个常量都会记住枚举类的一个对象。 3.枚举类的特点 ①枚举类的…...

JVM垃圾回收机制GC

一句话介绍GC&#xff1a; 自动释放不再使用的内存 一、判断对象是否能回收 思路一&#xff1a;引用计数 给这个对象里安排一个计数器&#xff0c; 每次有引用指向它&#xff0c; 就把计数器1&#xff0c; 每次引用被销毁&#xff0c;计数器-1&#xff0c;当计数器为0的时候…...

详解JAVA中的@ApiModel和@ApiModelProperty注解

目录 前言1. ApiModel注解2. ApiModelProperty注解3. 实战 前言 在Java中&#xff0c;ApiModel和ApiModelProperty是Swagger框架&#xff08;用于API文档的工具&#xff09;提供的注解&#xff0c;用于增强API文档的生成和展示。这两者搭配使用更佳 使用两者注解&#xff0c;…...

TiDB专题---2、TiDB整体架构和应用场景

上个章节我们讲解了TiDB的发展和特性&#xff0c;这节我们讲下TiDB具体的架构和应用场景。首先我们回顾下TiDB的优势。 TiDB的优势 与传统的单机数据库相比&#xff0c;TiDB 具有以下优势&#xff1a; 纯分布式架构&#xff0c;拥有良好的扩展性&#xff0c;支持弹性的扩缩容…...

性能调优入门

从公众号转载&#xff0c;关注微信公众号掌握更多技术动态 --------------------------------------------------------------- 一、性能定律和数理基础 1.三个定律法则 (1)帕累托法则 我它也被称为 80/20 法则、关键少数法则&#xff0c;或者八二法则。人们在生活中发现很多…...

JavaWeb | 验证码 、 文件的“上传”与“下载”

目录&#xff1a; 验证码 和 文件的“上传”与“下载”1.验证码1.1在JSP上开发验证码 2.“文件上传” 和 “文件下载”2.1“文件上传 ”2.2“文件下载” 验证码 和 文件的“上传”与“下载” 1.验证码 验证码&#xff1a;就是由服务器生成的一串随机数字或符号形成一幅图片&am…...

服务器感染了.halo勒索病毒,如何确保数据文件完整恢复?

导言&#xff1a; 随着科技的不断发展&#xff0c;网络安全问题日益突出&#xff0c;而.halo勒索病毒正是这个数字时代的一大威胁。本文将深入介绍.halo勒索病毒的特点&#xff0c;解释在受到攻击后如何有效恢复被加密的数据文件&#xff0c;并提供一些建议以预防未来可能的威…...

docker安装elasticsearch8.5.0和kibana

服务器环境&#xff0c;centos7 一、安装elasticsearch 1. 创建一个es和kibana通用的网络 docker network create es-net 2. 拉取es镜像&#xff0c;这里选择8.5.0版本 docker pull elasticsearch:8.5.03. 创建挂载目录&#xff0c;并授权 mkdir /usr/local/install/ela…...

如何使用内网穿透工具实现公网访问GeoServe Web管理界面

文章目录 前言1.安装GeoServer2. windows 安装 cpolar3. 创建公网访问地址4. 公网访问Geo Servcer服务5. 固定公网HTTP地址6. 结语 前言 GeoServer是OGC Web服务器规范的J2EE实现&#xff0c;利用GeoServer可以方便地发布地图数据&#xff0c;允许用户对要素数据进行更新、删除…...

koa2项目中封装log4js日志输出

1.日志输出到控制台 npm i log4js -D 封装log4js文件&#xff1a; 注意&#xff1a;每次都要重新获取log4js.getLogger(debug)级别才能生效 const log4js require("log4js");const levels {trace: log4js.levels.TRACE,debug: log4js.levels.DEBUG,info: log4js.…...

C# WPF上位机开发(抽奖软件)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 每到年末或者是尾牙的时候&#xff0c;很多公司都会办一些年终的清楚活动&#xff0c;感谢员工过去一年辛苦的付出。这个时候&#xff0c;作为年会…...

搭建部署Hadoop2.x和3.x的区别

文章目录 2.x 和 3.x 的区别Java最小支持版本常用的端口号配置文件Classpath隔离NodeManager重连 进入官网自行查阅 2.x 和 3.x 的区别 Java最小支持版本 Hadoop 2.x&#xff1a;2.7 版本需要 Java 7&#xff0c;2.6 以及更早期版本支持 Java 6Hadoop 3.x&#xff1a;最低要求…...

Java爬虫攻略:应对JavaScript登录表单

问题背景 在进行网络抓取数据时&#xff0c;经常会遇到需要登录的网站&#xff0c;特别是使用JavaScript动态生成登录表单的情况。传统的爬虫工具可能无法直接处理这种情况&#xff0c;因此需要一种能够模拟用户行为登录的情况解决方案。 在实际项目中&#xff0c;我们可能需要…...

基于单片机的电子密码锁设计

1&#xff0e;设计任务 利用AT89C51单片机为核心控制元件,设计一个简易的电子密码锁&#xff0c;可设置四位密码&#xff0c;输入错误三次&#xff0c;报警灯亮起&#xff08;红灯亮起&#xff09;&#xff0c;输入正确&#xff0c;绿灯闪烁三次。可通过LCD显示屏查看密码&…...

ChatGPT学习笔记

1 ChatGPT架构图 &#xff08;ChatGPT_Diagram.svg来自于【OpenA | Introducing ChatGPT】&#xff09; 2 模型训练 ChatGPT在训练时使用了PPO方法&#xff1b;...

One-to-Few Label Assignment for End-to-End Dense Detection阅读笔记

One-to-Few Label Assignment for End-to-End Dense Detection阅读笔记 Abstract 一对一&#xff08;o2o&#xff09;标签分配对基于变换器的端到端检测起着关键作用&#xff0c;最近已经被引入到全卷积检测器中&#xff0c;用于端到端密集检测。然而&#xff0c;o2o可能因为…...

Ubuntu22.04 使用Docker部署Neo4j出错 Exited(70)

项目场景&#xff1a; 最近需要使用Neo4j图数据库&#xff0c;因此打算使用docker部署 环境使用WSL Ubuntu22.04 问题描述 拉下最新Neo4j镜像&#xff0c;执行命令部署 启动容器脚本 docker run -d -p 7474:7474 -p 7687:7687 \ --name neo4j \ --env "NEO4J_AUTHneo…...

【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

&#x1f935;‍♂️ 个人主页: AI_magician &#x1f4e1;主页地址&#xff1a; 作者简介&#xff1a;CSDN内容合伙人&#xff0c;全栈领域优质创作者。 &#x1f468;‍&#x1f4bb;景愿&#xff1a;旨在于能和更多的热爱计算机的伙伴一起成长&#xff01;&#xff01;&…...

多人聊天室

多人聊天包 由于要先创建服务面板&#xff0c;接收客户端连接的信息&#xff0c;此代码使用顺序为先启动服务端&#xff0c;在启动客户端&#xff0c;服务端不用关&#xff0c;不然会报错。多运行几次客户端&#xff0c;实现单人聊天 1.创建服务面板 package yiduiy;import j…...

智慧园区可视化综合管理平台建设方案,智能化、数字化才是关键

园区作为城市的基本单元&#xff0c;是经济发展的重要载体。随着我国经济的快速发展&#xff0c;各类工业园区、办公园区等园区的规划建设也越来越多。伴随着互联网新兴技术的发展和应用&#xff0c;智慧园区已成为当今城市规划和社会发展的关注焦点&#xff0c;今天我们来介绍…...

kepler.gl部署在线说明文档

1 概述 1.1 介绍 1、Kepler.gl 是一个强大的开源地理空间分析工具&#xff0c;用于大规模数据集的可视化。它由 Uber 的数据可视化团队开发&#xff0c;并且是基于 Web 技术构建的。Kepler.gl 涉及到以下几个主要技术领域&#xff1a; WebGL: Kepler.gl 通过 WebGL 进行渲染…...

Java程序员,你掌握了多线程吗?

文章目录 01 多线程对于Java的意义02 为什么Java工程师必须掌握多线程03 Java多线程使用方式04 如何学好Java多线程写作末尾 摘要&#xff1a;互联网的每一个角落&#xff0c;无论是大型电商平台的秒杀活动&#xff0c;社交平台的实时消息推送&#xff0c;还是在线视频平台的流…...

Android 11.0 长按按键切换SIM卡默认移动数据

Android 11.0 长按按键切换SIM卡默认移动数据 近来收到客户需求想要通过长按按键实现切换SIM卡默认移动数据的功能&#xff0c;该功能主要通过长按按键发送广播来实现&#xff0c;具体修改参照如下&#xff1a; 首先创建广播&#xff0c;具体修改参照如下&#xff1a; /vend…...

Kafka集群调优+能力探底

一、前言 我们需要对4个规格的kafka能力进行探底&#xff0c;即其可以承载的最大吞吐&#xff1b;4个规格对应的单节点的配置如下&#xff1a; 标准版&#xff1a; 2C4G 铂金版&#xff1a; 4C8G 专业版&#xff1a; 8C16G 企业版&#xff1a; 16C32G 另外&#xff0c;一般…...

netcore swagger 错误 Failed to load API definition

后端接口报错如下&#xff1a; 前端nswag报错如下&#xff1a; 根据网上查询到的资料说明&#xff0c;说一般swagger这种错误都是控制器里有接口代码异常造成的&#xff0c;通常是接口没有加属性Attribute&#xff0c; 比如[HttpPost("Delete")]、[HttpGet("Del…...

UDP Socket API 的讲解,以及回显服务器客户端的实现

文章目录 UDPDatagramSocktet APIDatagramPacket API UDP 客户端服务器实现 UDP 先来认识一下 UDP 的 socket api&#xff0c;两个核心的类&#xff1a;DatagramSocket、DatagramPacket. DatagramSocktet API 是一个 socket 对象。 什么是 socket&#xff1f; 操作系统&…...

数据结构与算法-D7栈实现及应用

顺序栈 具有顺序表同样的存储结构&#xff0c;由数组定义&#xff0c;配合用数组下标表示的栈顶指针top完成操作 sqstack.h stack_creat stack_push stack_empty stack_full 1、判断栈是否为空 2、top--&#xff0c;取&#xff1a;data[top1] stack_top stack_clear stack_fre…...

蓝桥杯真题:分巧克力(二分法)-Java版

由题目可知,该题的最终结果具有单调性,边长越大,可分蛋糕越少 可以用二分模板的向右找: 整数二分 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;public class Main {static int n,k; //n个块蛋糕,k个学生static int N 10…...

c++面试题

1.static的使用 1&#xff09;修饰局部变量&#xff1a;在函数内部使用static修饰局部变量&#xff0c;会使它成为静态局部变量。静态局部变量只会被初始化一次&#xff0c;且只有在第一次调用该函数时才会被初始化&#xff0c;之后每次调用该函数时都会保留上一次的值.从原来…...

高精度加法,减法,乘法,除法(上)(C语言)

前言 加&#xff0c;减&#xff0c;乘&#xff0c;除这些运算我们自然信手捏来&#xff0c;就拿加法来说&#xff0c;我们要用c语言编程算ab的和&#xff0c;只需让sum ab即可&#xff0c;可是这是局限的&#xff0c;我们都知道int的表示的最大值为2147483647&#xff08;32位…...

C++新经典模板与泛型编程:SFINAE特性的信息萃取

用成员函数重载实现is_default_constructible 首先介绍一个C标准库提供的可变参类模板std::is_default_constructible。这个类模板的主要功能是判断一个类的对象是否能被默认构造&#xff08;所谓默认构造&#xff0c;就是构造一个类对象时&#xff0c;不需要给该类的构造函数…...

java单人聊天

服务端 package 单人聊天;import java.awt.BorderLayout; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.io.BufferedReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import…...

nodejs环境安装

node安装 wget https://mirrors.tuna.tsinghua.edu.cn/nodejs-release/v20.8.0/node-v20.8.0-linux-x64.tar.gz tar xf node-v20.8.0-linux-x64.tar.xz -C /usr/local/ ln -s node-v20.8.0-linux-x64 nodevim /etc/profile.d/node.sh export PATH$PATH:/usr/local/node/binnp…...

R语言进行正态分布检验

查了很多资料&#xff0c;还是比较模糊 Kolmogorov-Smirnov检验&#xff08;K-S检验&#xff09;广泛用于正态性检验和其他分布的拟合检验。适用于中等到大样本。 Lilliefors检验是K-S检验的一种变体&#xff0c;专门为小样本设计。其通过使用更准确的临界值来提高对小样本的适…...

什么是SPA(Single Page Application)?它的优点和缺点是什么?

聚沙成塔每天进步一点点 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 欢迎来到前端入门之旅&#xff01;感兴趣的可以订阅本专栏哦&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领域的朋友们量身打造的。无论你是完全的新手还是有一些基础的开发…...

由于找不到xinput1_3.dll,无法继续执行代码的多种解决方法指南,xinput1_3.dll文件修复

当玩家或用户在启动某些游戏和应用程序时&#xff0c;可能会遭遇到一个系统错误提示&#xff1a;“由于找不到xinput1_3.dll,无法继续执行代码l”。这种情况通常指出系统中DirectX组件存在问题。以下我们将介绍几种常用的解决方法&#xff0c;并提供详细的操作步骤。 一.找不到…...

Vue---Echarts

项目需要用echarts来做数据展示&#xff0c;现记录vue3引入并使用echarts的过程。 1. 使用步骤 安装 ECharts&#xff1a;使用 npm 或 yarn 等包管理工具安装 ECharts。 npm install echarts 在 Vue 组件中引入 ECharts&#xff1a;在需要使用图表的 Vue 组件中&#xff0c;引入…...

uni-app实现返回刷新上一页

方案一 通过监听器实现 page1 uni.$on("refresh", function(data) {if(data.page "page2") {this.reload()} })page2 methods: {handleBack() {uni.$emit("refresh", {page: "page2"})uni.navigateBack()} }方案二 通过页面实例实…...

centos服务器安装docker和Rabbitmq

centos服务器 一 centos安装docker1 安装docker所需要的依赖包2配置yum源3查看仓库中所有的docker版本4安装docker5 设置docker为开机自启6验证docker是否安装成功 二 使用docker安装RabbitMQ拉取RabbitMQ镜像创建并运行容器 一 centos安装docker 1 安装docker所需要的依赖包 …...

【Redis】Redis高级特性和应用(慢查询、Pipeline、事务、Lua)

目录 Redis的慢查询 慢查询配置 慢查询操作命令 慢查询建议 Pipeline 事务 Redis的事务原理 Redis的watch命令 Pipeline和事务的区别 Lua Lua入门 安装Lua Lua基本语法 注释 标示符 关键词 全局变量 Lua中的数据类型 Lua 中的函数 Lua 变量 Lua中的控制语句…...

【pytorch】深度学习入门一:pytorch的安装与配置(Windows版)

请支持原创&#xff0c;认准DannisTang&#xff08;tangweixuan1995foxmail.com&#xff09; 文章目录 第〇章 阅读前提示第一章 准备工作第一节 Python下载第二节 Python安装第三节 Python配置第四节 Pycharm下载第五节 Pycharm安装第六节 CUDA的安装 第二章 Anaconda安装与配…...

安装postgresql驱动及python使用pyodbc指定postgresql驱动调用postgresql

注&#xff1a;Python解释器版本(32位/64位)和postgresql驱动版本(32位/64位)需一致。 一、安装postgresql驱动 https://www.postgresql.org/ftp/odbc/versions/msi/ &#xff08;1&#xff09;32位&#xff1a; &#xff08;2&#xff09;64位&#xff1a; 双击安装。全程默…...

【OpenCV】计算机视觉图像处理基础知识

目录 前言 推荐 1、OpenCV礼帽操作和黑帽操作 2、Sobel算子理论基础及实际操作 3、Scharr算子简介及相关操作 4、Sobel算子和Scharr算子的比较 5、laplacian算子简介及相关操作 6、Canny边缘检测的原理 6.1 去噪 6.2 梯度运算 6.3 非极大值抑制 6.4 滞后阈值 7、Ca…...

Course1-Week3-分类问题

Course1-Week3-分类问题 文章目录 Course1-Week3-分类问题1. 逻辑回归1.1 线性回归不适用于分类问题1.2 逻辑回归模型1.3 决策边界 2. 逻辑回归的代价函数3. 实现梯度下降4. 过拟合与正则化4.1 线性回归和逻辑回归中的过拟合4.2 解决过拟合的三种方法4.3 正则化4.4 用于线性回归…...

Dockerfile 指令的最佳实践

这些建议旨在帮助您创建一个高效且可维护的Dockerfile。 一、FROM 尽可能使用当前的官方镜像作为镜像的基础。Docker推荐Alpine镜像&#xff0c;因为它受到严格控制&#xff0c;体积小&#xff08;目前不到6 MB&#xff09;&#xff0c;同时仍然是一个完整的Linux发行版。 FR…...