当前位置: 首页 > news >正文

个人做电梯网站/广州seo公司推荐

个人做电梯网站,广州seo公司推荐,韩国flash网站,2017年广东省政府网站建设论文:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 作者:Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 链接:https://arxiv.org/abs/1312.6229 文章…

论文:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
作者:Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun
链接:https://arxiv.org/abs/1312.6229

文章目录

  • 1、算法概述
  • 2、OverFeat细节
    • 2.1 分类
    • 2.2 定位
  • 3、创新点

1、算法概述

OverFeat算法同时实现图像分类、定位及检测任务,也证明了采用一个网络同时做三种任务可以提高分类、定位、检测的准确率。文章介绍了一种通过累积预测边界框来定位和检测的方法。通过结合许多定位预测,可以在没有背景样本训练的情况下进行检测任务,不进行背景训练也可以让网络只关注正面类,以获得更高的准确性。文中报道的结果是基于ILSVRC2013的,分类报道TOP5(分类概率前5个包含groundTruth就算正确);定位也是报道TOP5但是需加上TOP5各自对应目标的bounding box预测且bounding box与groundTruth矩形框标注的iou大于50%才能算bounding box预测正确;检测任务就需要预测图像中的每个目标了(类别加定位,包括背景类)并以mAP的指标报道结果。

2、OverFeat细节

2.1 分类

OverFeat仿照AlexNet设计,但是对网络结构和推理步骤进行了改进;文中分类网络分为两种:速度和精度,结构如下:
在这里插入图片描述
在这里插入图片描述
相对于AlexNet,它没有采用对比度归一化,没有用带重叠的池化层,网络前两层使用了小的stride从而保留了比较大的特征图,因为大的stride虽然能快速减小特征图从而对网络推理提速但是对精度有损害。最终精度模型比速度模型的TOP5错误率少了2.21%(14.18%对16.39%)。

  • 多尺度分类
    AlexNet中,应用了多视角(multi-view)投票技术用来提升最后预测类别的精度,即通过4次corner_crop加一次center_crop,同时应用水平翻转共计10次分类结果来投票出最终的类别;然而这种方式还是忽略了大量图片区域,也在图片重叠区域存在计算冗余,此外,这种方式也只是图片的单一尺度,不一定是卷积神经网络最合适的推理尺度。所以作者采用了6种不同尺度的测试图像作为输入(每个尺度图像还增加了水平翻转),而且作者认为在特征提取最后一层(conv 5)直接做 max pooling,将导致最终输入图像的检测粒度不足,提出用偏移池化(offset pooling)操作实现让分类器的视角窗口在特征图上滑动,最终将偏移池化得到的特征图组合在一起输出结果。如下表、下图所示:
    在这里插入图片描述
    在这里插入图片描述
  • 卷积和高效的滑窗
    在此之前,很多滑动窗口技术都是为每个窗口重复进行所有的计算,这对计算资源的消耗是巨大的。而卷积天然就带有滑窗的方式,如下图所示,因为卷积操作是共享卷积核滑动操作,所以计算非常高效,作者最后在测试阶段,将最后的全连接层替换成了1x1卷积层,这样就能适应比训练图像大的图片测试了。
    在这里插入图片描述

2.2 定位

由分类到定位,基于之前的分类网络,把网络的分类器替换成回归器,训练这个网络预测每个位置和尺度的物体边界框,就可以实现定位任务。回归器也取网络的前5层的feature map输出作为bounding box的输入,该feature map也用作分类器训练,所以分类器和回归器共用前面的特征。回归器的输出是4个值,代表bounding box的坐标,每个类都有对应的bounding box预测。训练回归器时,前5层不参与训练;如果样本和真实标签的重叠小于50%,则样本不参与回归器的训练。(由于样本预处理和增强的原因,可能导致样本的范围和真实标签已经重叠较小)。下面看看定位/检测具体的工作步骤:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、创新点

采用multiscale、sliding window、offset pooling实现多尺度滑窗采样,基于卷积高效实现滑窗思想,在同一网络框架下实现分类、定位、检测。

相关文章:

目标检测——OverFeat算法解读

论文:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 作者:Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 链接:https://arxiv.org/abs/1312.6229 文章…...

vue获取主机id和IP地址

获取主机id和IP地址 在vue.config.js const os require(“os”); function getNetworkIp() { let needHost “”; // 打开的host try { // 获得网络接口列表 let network os.networkInterfaces(); for (let dev in network) { let iface network[dev]; for (let i 0; i …...

在pytorch中自定义dataset读取数据

这篇是我对哔哩哔哩up主 霹雳吧啦Wz 的视频的文字版学习笔记 感谢他对知识的分享 有关我们数据读取预训练 以及如何将它打包成一个一个batch输入我们的网络的 首先我们来看一下之前我们在讲resnet网络时所使用的源码 我们去使用了官方实现的image folder去读取我们的图像数据 然…...

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

1.关于稀疏卷积的解释:https://zhuanlan.zhihu.com/p/382365889 2. 答案: 在深度学习领域,尤其是计算机视觉任务中,遮蔽图像建模(Masked Image Modeling, MIM)是一种自监督学习策略,其基本思想…...

Java后端的登录、注册接口是怎么实现的

目录 Java后端的登录、注册接口是怎么实现的 Java后端的登录接口是怎么实现的 Java后端的注册接口怎么实现? 如何防止SQL注入攻击? Java后端的登录、注册接口是怎么实现的 Java后端的登录接口是怎么实现的 Java后端的登录接口的实现方式有很多种&a…...

TCP Keepalive 和 HTTP Keep-Aliv

HTTP的Keep-Alive 在http1.0的版本中,它是基于请求-应答模型和TCP协议的,也就是在建立TCP连接后,客户端发送一次请求并且接收到响应后,就会立马断开TCP连接,称为HTTP短连接,这种方式比较耗费时间以及浪费资…...

操作系统 复习笔记

操作系统的目标和作用 操作系统的目标 1.方便性 2.有效性 3.可扩展性 4.开放性 操作系统的作用 1.OS作为用户与计算机硬件系统之间的接口 2.OS作为计算机系统资源的管理者 3.OS实现了对计算机系统资源的抽象 推动操作系统发展的主要动力 1.不断提高计算机系统资源的…...

Java中实现单例模式的方式

1. 使用静态内部类实现单例模式 在Java中,使用静态内部类实现单例模式是一种常见而又有效的方式。这种方式被称为“静态内部类单例模式”或者“Holder模式”。这种实现方式有以下优点: 懒加载(Lazy Initialization):静…...

Vue3-01-创建项目

环境准备 1.需要用到 16.0 以及更高版本的 node.js 2.使用vscode编辑器进行项目开发可以在命令行中查看node的版本号: node -v创建项目 1.准备一个目录 例如,我创建项目的时候是在该目录下进行的;D:\projectsTest\vue3project2.执行创建命令(*&#x…...

Go 语言中的反射机制

欢迎大家到我的博客浏览&#xff0c;更好的阅读体验请点击 反射 | YinKais Blog 反射在大多数的应用和服务中并不常见&#xff0c;但是很多框架都依赖 Go 语言的反射机制简化代码。<!--more-->因为 Go 语言的语法元素很少、设计简单&#xff0c;所以它没有特别强的表达能…...

[leetcode 前缀和]

525. 连续数组 M :::details 给定一个二进制数组 nums , 找到含有相同数量的 0 和 1 的最长连续子数组&#xff0c;并返回该子数组的长度。 示例 1: 输入: nums [0,1] 输出: 2 说明: [0, 1] 是具有相同数量 0 和 1 的最长连续子数组。示例 2: 输入: nums [0,1,0] 输出: …...

Python与ArcGIS系列(十五)根据距离抓取字段

目录 0 简述1 实例需求2 arcpy开发脚本0 简述 在处理gis数据的时候,会遇到这种需求:将一个图层与另一个图层中相近的要素进行字段赋值。本篇将介绍如何利用arcpy及arcgis的工具箱实现这个功能。 1 实例需求 为了介绍这个功能的实现,我们需要有一个特定的功能需求。在这里选…...

YOLOv8分割训练及分割半自动标注

YOLOv8是基于目标检测算法YOLOv5的改进版,它在YOLOv5的基础上进行了优化和改进,加入了一些新的特性和技术,如切片注意力机制、骨干网络的选择等。 本文以yolov8-seg为基准,主要整理分割训练流程及使用v8分割模型进行半自动标注的过程。 一、v8-seg训练 1.1 环境配置 github…...

jsp页面通过class或者id获取a标签上的属性的值

要通过class和id两种方式获取a标签上的某个属性的值&#xff0c;或者给其赋值&#xff0c;可以使用JavaScript。以下是两种方法的示例&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name&q…...

题目:美丽的区间(蓝桥OJ 1372)

题目描述&#xff1a; 解题思路&#xff1a; 采用双指针的快慢指针。 图解 可以采用前缀和&#xff0c;但会相较麻烦。 题解&#xff1a; #include<bits/stdc.h> using namespace std;const int N 1e5 9; int a[N];// 因为是连续区间&#xff08;连续区间&#xff1…...

解决:During handling of the above exception, another exception occurred

解决&#xff1a;During handling of the above exception, another exception occurred 文章目录 解决&#xff1a;During handling of the above exception, another exception occurred背景报错问题报错翻译报错位置代码报错原因解决方法参考内容&#xff1a;今天的分享就到…...

计算机基础知识65

cookie和session的使用 # 概念&#xff1a;cookie 是客户端浏览器上的键值对 # 目的&#xff1a;为了做会话保持 # 来源&#xff1a;服务端写入的&#xff0c;服务端再返回的响应头中写入&#xff0c;浏览器会自动取出来 存起来是以key value 形式&#xff0c;有过期时间、path…...

Python开发运维:Python垃圾回收机制

目录 一、理论 1.Python垃圾回收机制 一、理论 1.Python垃圾回收机制 &#xff08;1&#xff09;引⽤计数器 1&#xff09;环状双向链表 refchain 在python程序中创建的任何对象都会放在refchain链表中。 name "david" age 20 hobby ["篮球",游泳…...

ros2/ros安装ros-dep||rosdep init错误

第一个错误的做法&#xff1a; sudo apt-get install python3-pip sudo pip3 install 6-rosdep sudo 6-rosdep 如果使用上述代码将会摧毁整个系统&#xff0c;不重装系统反正我是搞不定啊&#xff0c;因为我不知道那个写软件的人到底做了什么。因为这个我安装的版本是humble&…...

《深入理解计算机系统》学习笔记 - 第四课 - 机器级别的程序

Lecture 05 Machine Level Programming I Basics 机器级别的程序 文章目录 Lecture 05 Machine Level Programming I Basics 机器级别的程序intel 处理器的历史和体系结构芯片的构成AMD 公司(Advanced Micro Devices&#xff0c;先进的微型设备) C, 汇编, 机器代码定义汇编/机器…...

云原生(Cloud Native)——概念,技术,背景,优缺点,实践例子

云原生&#xff08;Cloud Native&#xff09;是一种构建和运行应用程序的方法&#xff0c;这些应用程序充分利用云计算的优势。云原生应用程序通常设计为在现代、动态的环境中运行&#xff0c;如公共云、私有云和混合云。这种方法强调微服务架构、容器化、自动化、易于管理和可…...

ElasticSearch之线程池

ElasticSearch节点可用的CPU核的数量&#xff0c;通常可以交给ElasticSearch来自行检测和判定&#xff0c;另外可以在elasticsearch.yml中显式指定。样例如下&#xff1a; node.processors: 2如下表格中的processors即CPU核的数量。 线程池的列表 线程池名称类型线程数量队列…...

StoneDB-8.0-V2.2.0 企业版正式发布!性能优化,稳定性提升,持续公测中!

​ 11月&#xff0c;StoneDB 新版本如期而至&#xff0c;这一个月来我们的研发同学加班加点&#xff0c;持续迭代&#xff1a;在 2.2.0 版本中&#xff0c;我们针对用户提出的需求和做出了重量级更新&#xff0c;修复了一些已知和用户反馈的 Bug&#xff0c;同时对部分代码进行…...

【数据结构 — 排序 — 插入排序】

数据结构 — 排序 — 插入排序 一.排序1.1.排序的概念及其运用1.1.1排序的概念1.1.2排序运用1.1.3 常见的排序算法 二.插入排序2.1.直接插入排序2.1.1.算法讲解2.1.2.代码实现2.1.2.1.函数定义2.1.2.2.算法接口实现2.1.2.3.测试代码实现2.1.2.4.测试展示 2.2.希尔排序2.2.1.算法…...

物联网后端个人第十四周总结

物联网方面进度 1.登陆超时是因为后端运行的端口和前端监听的接口不一样&#xff0c;所以后端也没有报错&#xff0c;将二者修改一致即可 2.登录之后会进行平台的初始化&#xff0c;但是初始化的时候会卡住,此时只需要将路径的IP端口后边的内容去掉即可 3.阅读并完成了jetlinks…...

在uniapp中,可以使用那些预定义的样式类

u-flex&#xff1a;设置元素为弹性布局。u-flex-v&#xff1a;设置元素为纵向弹性布局。u-flex-h&#xff1a;设置元素为横向弹性布局。u-p-10&#xff1a;设置元素的上下左右边距为10rpx。u-p-t-10&#xff1a;设置元素的上边距为10rpx。u-p-b-10&#xff1a;设置元素的下边距…...

mybatis的数据库连接池

直接看原文 原文链接:【MyBatis】 连接池技术_mybatis自带连接池-CSDN博客 本文先不说springBoot整合mybatis后的 本文讲的是没有被springBoot整合前的mybatis自己的默认的连接池 --------------------------------------------------------------------------------------…...

Vue 的 el-select 下拉选项中,只有当文字超出时才显示提示框,未超出的则不显示

Vue 的 el-select 下拉选项中&#xff0c;只有当文字超出时才显示提示框&#xff0c;未超出的则不显示 <template><div><el-select v-model"selected" placeholder"请选择"><el-optionv-for"item in options":key"it…...

【Python】pptx文件转pdf

要将PPTX文件转换为PDF格式&#xff0c;你可以使用Python的python-pptx库来读取PPTX文件&#xff0c;然后使用comtypes库在Windows上或unoconv在Linux上来进行转换。但是&#xff0c;需要注意的是&#xff0c;comtypes依赖于Microsoft Office&#xff0c;而unoconv依赖于LibreO…...

response应用及重定向和request转发

请求和转发&#xff1a; response说明一、response文件下载二、response验证码实现1.前置知识&#xff1a;2.具体实现&#xff1a;3.知识总结 三、response重定向四、request转发五、重定向和转发的区别 response说明 response是指HttpServletResponse,该响应有很多的应用&…...