多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
目录
- 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 参考资料
预测效果







基本介绍
MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测。
模型描述
MATLAB实现BWO-CNN-BiGRU-Multihead-Attention白鲸算法优化结合卷积神经网络 (CNN) 和双向门控循环单元 (BiGRU融合多头自注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
适用领域:风速预测、光伏功率预测、发电功率预测、碳价预测等多种应用。 BWO 白鲸优化算法,于2022年发表在SCI、中科院1区期刊《Knowledge-Based Systems》上。
多头自注意力机制使得模型能够更灵活地对不同时间步的输入信息进行加权。这有助于模型更加集中地关注对预测目标有更大影响的时间点。自注意力机制还有助于处理时间序列中长期依赖关系,提高了模型在预测时对输入序列的全局信息的感知。CNN可以用于提取时间序列数据中的局部特征。通过使用卷积层和池化层,CNN可以捕捉到时间序列中的空间和时间依赖关系。卷积层可以识别不同频率的模式,而池化层可以减少特征维度并保留最重要的信息。
接下来,使用双向门控循环单元(BiGRU)来学习时间序列数据中的长期依赖性。BiGRU结构可以同时考虑过去和未来的信息,从而更好地捕捉时间序列中的动态模式。通过双向结构,模型可以利用过去和未来的上下文信息来进行更准确的预测。
最后,引入多头自注意力机制,可以进一步提高模型的性能。自注意力机制允许模型自动学习时间序列数据中不同位置的重要性权重,从而更好地关注关键的时间步。多头自注意力机制可以并行地学习多个不同的注意力权重,以捕捉不同的关注点。
通过将CNN、BiGRU和多头自注意力机制结合起来,可以构建一个强大的模型,用于雪消融的多变量时间序列预测。模型可以同时考虑局部特征、长期依赖性和重要性权重,从而提高预测的准确性。

程序设计
- 完整程序和数据获取方式1:同等价值程序兑换;
- 完整程序和数据获取方式2:私信博主回复MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测获取。
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 数据集分析
outdim = 1; % 最后一列为输出
num_size = 0.7; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154
参考资料
[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501
相关文章:
多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测
多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BWO-CNN-BiGRU-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现BWO-CNN-B…...
C++ 中的引用
文章目录 C 引用的应用1. 修改函数中传递的参数2. 避免复制大型结构3. for 循环中修改所有对象4. for 循环中避免复制对象 References vs Pointers引用的限制使用引用的优点练习Quesition 1Question 2Question 3Question 4Question 5Question 6 如果一个变量被声明为引用&#…...
MQ-Det: Multi-modal Queried Object Detection in the Wild
首个支持视觉和文本查询的开放集目标检测方法 NeurIPS2023 文章:https://arxiv.org/abs/2305.18980 代码:https://github.com/YifanXu74/MQ-Det 主框图 摘要 这篇文章提出了MQ-Det,一种高效的架构和预训练策略,它利用文本描述的…...
HarmonyOS应用开发初体验
9月25日华为秋季全场景新品发布会上,余承东宣布,全面启动鸿蒙原生应用,HarmonyOS NEXT开发者预览版将在2024年第一季度面向开发者开放。 最近鸿蒙开发可谓是火得一塌糊涂,各大培训平台都开设了鸿蒙开发课程。美团发布了鸿蒙高级工…...
《C++新经典设计模式》之第4章 策略模式
《C新经典设计模式》之第4章 策略模式 策略模式.cpp 策略模式.cpp #include <iostream> #include <memory> using namespace std;// if或switch分支不稳定,经常改动时,考虑引入算法独立到策略类中去实现// 依赖倒置原则 // 高层组件不应该依…...
【方法】PowerPoint“只读方式”如何取消?
PPT设置了以“只读方式”打开,可以保护文件无法编辑更改,那后续不需要保护了,或者想要编辑文件,要如何取消“只读方式”呢? 首先,我们要看看PPT设置的是哪种“只读方式”。 如果PPT设置的是无密码“只读方…...
MySQL数据库概念与实践
MySQL数据库概念与实践 1. 概念 MySQL是一种常用的关系型数据库管理系统,具有丰富的功能和广泛的应用。在本篇博客中,我们将介绍MySQL数据库的一些重要概念和相关知识。 存储引擎 存储引擎是MySQL数据库用于存储、更新和查询数据的技术实现方法。MyS…...
【ArcGIS Pro微课1000例】0052:基于SQL Server创建企业级地理数据库案例
文章目录 环境搭建创建企业级数据库连接企业级数据库环境搭建 ArcGIS:ArcGIS Pro 3.0.1Server.ecp:版本为10.7SQL Server:版本为SQL Server Developer 2019创建企业级数据库 企业级地理数据库的创建需要通过工具箱来实现。工具位于:数据管理工具→地理数据库管理→创建企业…...
深度学习——第3章 Python程序设计语言(3.7 matplotlib库)
3.7 matplotlib库 目录 1 matplotlib库简介 2 pyplot的plot函数 3 matplotlib基础绘图函数示例 数据可视化有助于深度理解数据。 本节介绍绘制图形的基本方法。 1. matplotlib库简介 matplotlib官网 1.1 matplotlib库概述 matplotlib是Python优秀的数据可视化第三方库&a…...
【数据分析实战】酒店行业华住集团门店分布与评分多维度分析
文章目录 1. 写在前面2. 数据集展示3. 多维度分析3.1 门店档次多元化:集团投资战略观察3.1.1 代码实现3.1.2 本人浅薄理解 3.2 门店分布:各省市分布概览3.2.1 代码实现3.2.2 本人浅薄理解 3.3 门店分级评分:服务水平的多维度观察3.3.1 代码实…...
近期Chrome浏览器 不知哪个版本升级后原先http强制跳转到https,导致服务端302强制跳转到http也没反应
关于Chrome更新http强制跳转到https解决方法 近期Chrome浏览器 不知哪个版本升级后原先http强制跳转到https,导致服务端302强制跳转到http也没反应一、F12检查加载的Response Headers中有没有Non-Authoritative-Reason二、找了资料后得到解决方案:三、找…...
【scikit-learn基础】--『数据加载』之样本生成器
除了内置的数据集,scikit-learn还提供了随机样本的生成器。通过这些生成器函数,可以生成具有特定特性和分布的随机数据集,以帮助进行机器学习算法的研究、测试和比较。 目前,scikit-learn库(v1.3.0版)中有2…...
基于 ESP32-S3 的 Walter 开发板
Walter 是一款基于 ESP32-S3 且拥有 5G LTE 连接功能的新型开源开发套件。 近日,比利时公司 DPTechnics BV 推出了一款基于乐鑫 ESP32-S3 且拥有 5G LTE 连接功能的新型开源开发套件。该套件即将在 Crowd Supply 平台上发布,您可以点击此处了解详情。 无…...
Gitlab+GitlabRunner搭建CICD自动化流水线将应用部署上Kubernetes
文章目录 安装Gitlab服务器准备安装版本安装依赖和暴露端口安装Gitlab修改Gitlab配置文件访问Gitlab 安装Gitlab Runner服务器准备安装版本安装依赖安装Gitlab Runner安装打包工具安装docker安装java17安装maven 注册Gitlab Runner 搭建自动化部署准备SpringBoot项目添加一个Co…...
待做-待补充-每个节点做事,时间,以及与角度的关系
文章目录 纲领1.是否可以通过遍历一遍二叉树得到答案2.是否可以通过两颗子树相同问题的答案推导出树的答案(形式为递归)无论哪种思维模式,都需要思考:单独一个二叉树节点,它需要做什么事情?需要在什么时候做 后序判断问题是否和子树相关&…...
液态二氧化碳储存罐远程无线监测系统
二氧化碳强化石油开采技术,须先深入了解石油储层的地质特征和二氧化碳的作用机制。现场有8辆二氧化碳罐装车,每辆罐车上有4台液态二氧化碳储罐,每台罐的尾部都装有一台西门子S7-200 smart PLC。在注入二氧化碳的过程中,中控室S7-1…...
kafka学习笔记--安装部署、简单操作
本文内容来自尚硅谷B站公开教学视频,仅做个人总结、学习、复习使用,任何对此文章的引用,应当说明源出处为尚硅谷,不得用于商业用途。 如有侵权、联系速删 视频教程链接:【尚硅谷】Kafka3.x教程(从入门到调优…...
UE4 材质实现Glitch效果
材质实现Glitch效果 UE4 材质实现Glitch效果预览1预览2 UE4 材质实现Glitch效果 预览1 添加材质函数: MF_RandomNoise 添加材质: 预览2 添加材质函数MF_CustomPanner: 添加材质函数:MF_Glitch 材质添加: 下面用…...
oracle实验2023-12-8--触发器
第十四周实验 【例】功能要求:增加一新表XS_1,表结构和表XS相同,用来存放从XS表中删除的记录。 分析: 1、创建表 xs_1 SQL> create table xs_1 as select * from xs; Table created SQL> truncate table xs_1; Table truncated题目&a…...
【Python百宝箱】贝叶斯统计的魅力:从PyMC3到ArviZ,探索数据背后的不确定性
标题:预测未来趋势的利器:深入贝叶斯统计和概率编程的世界 前言 贝叶斯统计和概率编程是一种强大的分析方法,可以帮助我们处理不确定性、建立灵活的模型以及进行参数估计和推断。本文将介绍几个常用的Python库,包括PyMC3、ArviZ…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
leetcodeSQL解题:3564. 季节性销售分析
leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
