当前位置: 首页 > news >正文

【YOLOv8/YOLOv7/YOLOv5系列算法改进NO.56】引入Contextual Transformer模块(sci期刊创新点之一)

文章目录

  • 前言
  • 一、解决问题
  • 二、基本原理
  • 三、​添加方法
  • 四、总结


前言

作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大量改进论文,这个不论对于搞科研的同学或者已经工作的朋友来说,研究的价值和新颖度都不太够了,为与时俱进,以后改进算法以YOLOv7为基础,此前YOLOv5改进方法在YOLOv7同样适用,所以继续YOLOv5系列改进的序号。另外改进方法在YOLOv5等其他算法同样可以适用进行改进。希望能够对大家有帮助。
具体改进办法请关注后私信留言!关注免费领取深度学习算法学习资料!


一、解决问题

YOLO检测网络的主干特征提取网络为CNN网络,CNN具有平移不变性和局部性,缺乏全局建模长距离建模的能力,引入自然语言处理领域的框架Transformer来形成CNN+Transformer架构,充分两者的优点,提高目标检测效果,本人经过实验,对小目标以及密集预测任务会有一定的提升效果。此前
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数💡🎈☁️25. 引入Swin Transformer💡🎈☁️29. 引入Swin Transformer v2.0版本这个方法本人也在去年用过,作为sci期刊的核心创新点之一,朋友们可以用在自己的应用领域。关于原理等需要帮助讲解可以私信我,我对此有较深的理解

二、基本原理

在这里插入图片描述
具有自我关注的Transformer导致了自然语言处理领域的革命,最近,Transformer风格架构设计的出现在众多计算机视觉任务中产生了竞争性的结果。然而,大多数现有设计直接在2D特征图上部署自我关注,以获得基于每个空间位置处的孤立查询和键对的注意力矩阵,但未充分利用相邻键之间的丰富上下文。在这项工作中,我们设计了一个新颖的Transformer风格模块,即上下文变换器(CoT)块,用于视觉识别。这种设计充分利用了输入键之间的上下文信息来指导动态注意力矩阵的学习,从而增强了视觉表示的能力。技术上,CoT块首先通过3×3卷积对输入键进行上下文编码,导致输入的静态上下文表示。我们进一步将编码密钥与输入查询连接起来,通过两个连续的1×1卷积来学习动态多头注意力矩阵。学习的注意力矩阵乘以输入值,以实现输入的动态上下文表示。最终将静态和动态上下文表示的结果作为输出。我们的CoT块很有吸引力,因为它可以很容易地替换ResNet架构中的每个3×。通过对广泛应用(如图像识别、对象检测和实例分割)的广泛实验,我们验证了CoT-Net作为一个更强大的主干的优势。

三、​添加方法

将CoT模块引入到原有的原网络模型中,将ResNet结构进行了改进,利用CoTNet的思想完成了C3结构的构建,形成新的C3_CoT模块。因为网络末端的特征图分辨率较低,将新的C3_CoT模块应用于低分辨率特征图可以降低昂贵的计算和存储成本。
部分代码如下:

class C3_cot(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper(C3_cot, self).__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*[Bottleneck_cot(c_, c_, shortcut, g, e=1.0) for _ in range(n)])# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))class C3TR(C3):# C3 module with TransformerBlock()def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):super().__init__(c1, c2, n, shortcut, g, e)c_ = int(c2 * e)self.m = TransformerBlock(c_, c_, 4, n)

四、总结

预告一下:下一篇内容将继续分享深度学习算法相关改进方法。有兴趣的朋友可以关注一下我,有问题可以留言或者私聊我哦

PS:该方法不仅仅是适用改进YOLOv5,也可以改进其他的YOLO网络以及目标检测网络,比如YOLOv7、v6、v4、v3,Faster rcnn ,ssd等。

最后,有需要的请关注私信我吧。关注免费领取深度学习算法学习资料!


YOLO系列算法改进方法 | 目录一览表
💡🎈☁️1. 添加SE注意力机制
💡🎈☁️2.添加CBAM注意力机制
💡🎈☁️3. 添加CoordAtt注意力机制
💡🎈☁️4. 添加ECA通道注意力机制
💡🎈☁️5. 改进特征融合网络PANET为BIFPN
💡🎈☁️6. 增加小目标检测层
💡🎈☁️7. 损失函数改进
💡🎈☁️8. 非极大值抑制NMS算法改进Soft-nms
💡🎈☁️9. 锚框K-Means算法改进K-Means++
💡🎈☁️10. 损失函数改进为SIOU
💡🎈☁️11. 主干网络C3替换为轻量化网络MobileNetV3
💡🎈☁️12. 主干网络C3替换为轻量化网络ShuffleNetV2
💡🎈☁️13. 主干网络C3替换为轻量化网络EfficientNetv2
💡🎈☁️14. 主干网络C3替换为轻量化网络Ghostnet
💡🎈☁️15. 网络轻量化方法深度可分离卷积
💡🎈☁️16. 主干网络C3替换为轻量化网络PP-LCNet
💡🎈☁️17. CNN+Transformer——融合Bottleneck Transformers
💡🎈☁️18. 损失函数改进为Alpha-IoU损失函数
💡🎈☁️19. 非极大值抑制NMS算法改进DIoU NMS
💡🎈☁️20. Involution新神经网络算子引入网络
💡🎈☁️21. CNN+Transformer——主干网络替换为又快又强的轻量化主干EfficientFormer
💡🎈☁️22. 涨点神器——引入递归门控卷积(gnConv)
💡🎈☁️23. 引入SimAM无参数注意力
💡🎈☁️24. 引入量子启发的新型视觉主干模型WaveMLP(可尝试发SCI)
💡🎈☁️25. 引入Swin Transformer
💡🎈☁️26. 改进特征融合网络PANet为ASFF自适应特征融合网络
💡🎈☁️27. 解决小目标问题——校正卷积取代特征提取网络中的常规卷积
💡🎈☁️28. ICLR 2022涨点神器——即插即用的动态卷积ODConv
💡🎈☁️29. 引入Swin Transformer v2.0版本
💡🎈☁️30. 引入10月4号发表最新的Transformer视觉模型MOAT结构
💡🎈☁️31. CrissCrossAttention注意力机制
💡🎈☁️32. 引入SKAttention注意力机制
💡🎈☁️33. 引入GAMAttention注意力机制
💡🎈☁️34. 更换激活函数为FReLU
💡🎈☁️35. 引入S2-MLPv2注意力机制
💡🎈☁️36. 融入NAM注意力机制
💡🎈☁️37. 结合CVPR2022新作ConvNeXt网络
💡🎈☁️38. 引入RepVGG模型结构
💡🎈☁️39. 引入改进遮挡检测的Tri-Layer插件 | BMVC 2022
💡🎈☁️40. 轻量化mobileone主干网络引入
💡🎈☁️41. 引入SPD-Conv处理低分辨率图像和小对象问题
💡🎈☁️42. 引入V7中的ELAN网络
💡🎈☁️43. 结合最新Non-local Networks and Attention结构
💡🎈☁️44. 融入适配GPU的轻量级 G-GhostNet
💡🎈☁️45. 首发最新特征融合技术RepGFPN(DAMO-YOLO)
💡🎈☁️46. 改进激活函数为ACON
💡🎈☁️47. 改进激活函数为GELU
💡🎈☁️48. 构建新的轻量网络—Slim-neck by GSConv(2022CVPR)
💡🎈☁️49. 模型剪枝、蒸馏、压缩
💡🎈☁️50. 超越ConvNeXt!Conv2Former:用于视觉识别的Transformer风格的ConvNet
💡🎈☁️51.融入多分支空洞卷积结构RFB-Bottleneck改进PANet构成新特征融合网络
💡🎈☁️52.将YOLOv8中的C2f模块融入YOLOv5
💡🎈☁️53.融入CFPNet网络中的ECVBlock模块,提升小目标检测能力

相关文章:

【YOLOv8/YOLOv7/YOLOv5系列算法改进NO.56】引入Contextual Transformer模块(sci期刊创新点之一)

文章目录前言一、解决问题二、基本原理三、​添加方法四、总结前言 作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列…...

深圳大学计软《面向对象的程序设计》实验3 指针2

A. 月份查询(指针数组) 题目描述 已知每个月份的英文单词如下,要求创建一个指针数组,数组中的每个指针指向一个月份的英文字符串,要求根据输入的月份数字输出相应的英文单词 1月 January 2月 February 3月 March …...

【基于机器学习的推荐系统项目实战-2】项目介绍与技术选型

本节目录一、项目介绍1.1 采用的数据源1.2 Concrec架构技术选型1.3 Sprak介绍1.4 Flink1.5 TensorFlow一、项目介绍 1.1 采用的数据源 Kaggle Anime Recommendations Dataset。 其中的动漫数据源自myanimelist.net。 1.2 Concrec架构技术选型 数据预处理模块:汇总…...

对称锥规划:锥与对称锥

文章目录对称锥规划:锥与对称锥锥的几何形状常用的指向锥Nonnegative Orthant二阶锥半定锥对称锥对称锥的平方操作对称锥的谱分解对称锥的自身对偶性二阶锥规划SOCP参考文献对称锥规划:锥与对称锥 本文主要讲锥与对称锥的一些基本概念。 基础预备&…...

4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取

情感分析任务Label Studio使用指南 1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等 2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等…...

算法拾遗二十五之暴力递归到动态规划五

算法拾遗二十七之暴力递归到动态规划七题目一【数组累加和最小的】题目二什么暴力递归可以继续优化暴力递归和动态规划的关系面试题和动态规划的关系如何找到某个问题的动态规划方式面试中设计暴力递归的原则知道了暴力递归的原则 然后设计常见的四种尝试模型如何分析有没有重复…...

Linux进程的创建结束类系统调用总结

tags: Linux OS Syscall C 写在前面 总结一下Linux系统的进程创建/终止/等待等系统调用, 参考: Linux/Unix系统编程手册. 下面主要给出例子, 关于函数原型可以参考书中或者man 2 syscall(例如man 2 fork). 测试环境: Ubuntu 20.04 x86_64 gcc-9 进程创建: fork() 用于创建…...

Git分支的合并策略有哪些?Merge和Rebase有什么区别?关于Merge和Rebase的使用建议

Git分支的合并策略有哪些?Merge和Rebase有什么区别?关于Merge和Rebase的使用建议1. 关于Git的一些基本原理1.1 Git的工作流程原理2. Git的分支合并方式浅析2.1 分支是什么2.2 分支的合并策略2.2.1 Three-way-merge(三向合并原理)2…...

2022-2-23作业

一、通过操作Cortex-A7核,串口输入相应的命令,控制LED灯进行工作 1.例如在串口输入led1on,开饭led1灯点亮 2.例如在串口输入led1off,开饭led1灯熄灭 3.例如在串口输入led2on,开饭led2灯点亮 4.例如在串口输入led2off,开饭led2灯熄灭 5.例如在串口输…...

1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等

文本抽取任务Label Studio使用指南 1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等 2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等…...

“高退货率”标签引热议,亚马逊跨境电商是好是坏?

在多数卖家不知情的情况下,亚马逊“高退货率”标签上线,该消息已被官方证实,目的是为了践行以客户为中心的理念和推动卖家提升服务。 官方确认上线“高退货率”标签 近期,有亚马逊卖家发现产品详情页出现了“高退货率”标签&…...

Pinia2

一、入门案例 1、安装 npm i pinia -S 2、注册插件 //main.ts import { createPinia } from pinia app.use(createPinia()) 3、创建store/countStore.ts import { defineStore } from "pinia"; const useCounterStore defineStore(counterStore,{ state(){ return{…...

服务器配置 | 在Windows本地打开服务器端Tensorboard结果

文章目录方法1:直接cmd使用ssh登录远程服务器方法2:利用Xshell设置本地端口进行监听方法3:利用MobaXterm设置本地端口监听这里介绍三个方法,在在Windows本地打开服务器端Tensorboard结果 方法1:直接cmd使用ssh登录远程…...

13 nuxt3学习(新建页面 内置组件 assets 路由)

新建页面 Nuxt项目中的页面是在 pages目录 下创建的 在pages目录创建的页面,Nuxt会根据该页面的目录结构和其文件名来自动生成对应的路由。页面路由也称为文件系统路由器(file system router),路由是Nuxt的核心功能之一 方式一…...

Linus命令记录(持续编辑版)

目录 一、前言 二、2023年2月查找Linus命令记录 1、竖线 |,双竖线 ||,&和&& 2、wc 3、free 和 top 4、c 库函数 strcpy() 5、c 库函数 memmove() 6、open 三、2023年3月查找Linus命令记录 1、sort 2、uniq 一、前言 有时候遇到不…...

玩转ThreadLocal

前言 ThreadLocal想必都不陌生,当多线程访问同一个共享变量时,就容易出现并发问题,为了保证线程安全,我们需要对共享变量进行同步加锁,但这又带来了性能消耗以及使用者的负担,那么有没有可能当我们创建一个…...

亚马逊二审来袭,跨境电商传统验证算法真的靠谱吗?

多个大卖突遭二审 已有卖家账号被封 近期有不少卖家在论坛上反映称自己收到了亚马逊的二次视频验证邮件。 邮件上称: 卖家必须要完成额外的身份审查,才有资格在亚马逊继续销售商品;亚马逊要求卖家出示注册时提交的身份证原件和营业执照原件…...

微信小程序|基于小程序+云开发制作一个租房小程序

经济发展的同时伴随着大批人群的流动,租房需求一直是持久不衰的话题,如何租好房,好租房,跟随此文一起制作一个租房小程序,让租房不再困难。 一、小程序1. 创建小程序2. 首页3. 房源列表页4. 房源详情页5. 个人中心页</...

2.4 群辉驱动:多网口,系统网络只能识别两个网口 解决教程

所需工具下载&#xff1a;链接&#xff1a;https://pan.baidu.com/s/1CMLl6waOuW-Ys2gKZx7Jgg?pwdchct提取码&#xff1a;chct安装的黑群晖华硕z490i主板自带一个i225 2.5G&#xff0c;后又插了一个4口8125B四口网卡&#xff0c;发现控制面板->网络->网络界面 只识别了其…...

Android正确使用资源res文件

观看此文注意首先有的UI改颜色&#xff0c;没用&#xff0c;发现无法更改按钮背景颜色。我的AS下载的是最新版本&#xff0c;Button按钮的背景颜色一直都是亮紫色&#xff0c;无法更改。为什么呢&#xff1f;首先在你的清单文件中看你应用的是哪个主题。我现在用的是这个可能你…...

5分钟搭建第一个k8s集群

急速上手Minikube搭建单节点 k8s集群实战什么是Minikube?环境准备安装步骤一.安装Docker1.安装yml2.设置阿里云镜像3.查看可安装的docker版本4. 安装docker5. 查看docker版本6.配置docker开机自启动7. 启动docker, 查看docker 启动状态二.安装k8s1.配置镜像源2.安装kubectl3.安…...

【MySQL】查询操作(基础篇)

目录 1、查询操作(Retrieve) 1.1 全列查询 1.2 指定列查询 1.3 查询字段为表达式 1.4 别名 1.5 去重&#xff1a;DISTINCT 1.6 排序&#xff1a;ORDER BY 1.7 条件查询&#xff1a;WHERE 1.8 分页查询 1、查询操作(Retrieve) 查询操作算的上是 SQL 中最复杂的操作了…...

工程管理系统+spring cloud 系统管理+java 系统设置+二次开发

工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#xff1a;实现对数据字典标签的增删改查操作 2、编码管理&#xff1a;实现对系统编码的增删改查操作 3、用户管理&#xff1a;管理和查看用户角色 4、菜单管理&#xff1a;实现对系统菜单的增删改查操…...

MyBatisPlus Study Notes

文章目录1 MyBatisPlus概述1.1 MyBatis介绍1.2 MyBatisPlus特性2 标准数据层开发2.1 MyBatisPlus的CRUD操作API2.2 分页功能接口实现2.2.1 config&#xff08;配置层&#xff09;拦截器实现2.2.2 Dao(Mapper)数据访问层&#xff08;CRUD&#xff09;操作2.2.3 Junit单元测试进行…...

【Vu3 测试篇】自动化测试

一、为什么需要测试 自动化测试能够预防无意引入的 bug&#xff0c;并鼓励开发者将应用分解为可测试、可维护的函数、模块、类和组件。这能够帮助你和你的团队更快速、自信地构建复杂的 Vue 应用。与任何应用一样&#xff0c;新的 Vue 应用可能会以多种方式崩溃&#xff0c;因…...

Android system实战 — Android R(11) 第三方apk权限

Android system实战 — 第三方apk权限问题0. 前言1. 源码实现1.1 主要函数1.2 修改思路和实现1.2.1 修改思路1.2.2 方案一1.2.3 方案二0. 前言 最近在调试时遇到了第三方apk申请运行时权限&#xff0c;以及signature级别 install 权限不允许赋予给第三方apk&#xff0c;虽然这是…...

面试总结1

这里写目录标题什么是ORM&#xff1f;为什么mybatis是半自动的ORM框架&#xff1f;动态sqlJDBC步骤&#xff1a;jdbc的缺点&#xff1a;JDBC,MyBatis的区别&#xff1a;MyBatis相比JDBC的优势缓存一级缓存一级缓存在下面情况会被清除二级缓存最近在面试&#xff0c;发现了许多自…...

【Hello Linux】程序地址空间

作者&#xff1a;小萌新 专栏&#xff1a;Linux 作者简介&#xff1a;大二学生 希望能和大家一起进步&#xff01; 本篇博客简介&#xff1a;简单介绍下进程地址空间 程序地址空间程序地址空间语言中的程序地址空间矛盾系统中的程序地址空间为什么要有进程地址空间思维导图总结…...

电脑崩溃蓝屏问题如何重装系统

电脑是我们日常生活和工作中必不可少的工具&#xff0c;但在使用过程中&#xff0c;难免会遇到各种问题&#xff0c;例如系统崩溃、蓝屏、病毒感染等&#xff0c;这些问题会严重影响我们的使用体验和工作效率。而小白一键重装系统可以帮助我们快速解决这些问题&#xff0c;本文…...

《商用密码应用与安全性评估》第一章密码基础知识1.2密码评估基本原理

商用密码应用安全性评估&#xff08;简称“密评”&#xff09;的定义&#xff1a;在采用商用密码技术、产品和服务集成建设的网络与信息系统中&#xff0c;对其密码应用的合规性、正确性、有效性等进行评估 信息安全管理过程 相关标准 国际:ISO/IEC TR 13335 中国:GB/T …...

dedecms三合一网站源码/网络推广自学

1、创建一个SpringBooot项目并且打成jar包 2、在Linux中创建一个文件夹&#xff0c;来做docker测试 [rootizwz90lvzs7171wgdhul8az ~]# mkdir /root/docker_test 3、将jar包上传到Linux中 创建存放jar包的文件夹 [rootizwz90lvzs7171wgdhul8az docker_test]# mkdir /root/d…...

有没有做面粉美食的网站/谷歌搜索入口365

在使用 Mybatis 的时候&#xff0c;都会使用resultMap节点来绑定列与bean属性的对应关系&#xff0c;但是一般就只会使用其简单的属性&#xff0c;他还有一些比较复杂的属性可以实现一些高级的功能&#xff0c;在没查看源码之前&#xff0c;我也只会简单的使用&#xff0c;很多…...

食品公司建设网站目的/seo是搜索引擎吗

https://github.com/gaoconggit/MyMVC...

建行app官方下载/网站seo好学吗

CWinApp* acedGetAcadWinApp()返回指向AutoCAD应用程序类实例的指针 CDocument* acedGetAcadDoc()返回指向AutoCAD文件类实例的指针 CView* acedGetAcadDwgView()返回指向视图类的指针&#xff08;AutoCAD的绘图区&#xff09; CMDIFrameWnd* acedGetAcadFrame()返回一个多文…...

网络销售推广平台/seo最新技巧

一个朋友是前阿里人&#xff0c;37岁&#xff0c;离职后就职美团。以前投一个面一个&#xff0c;今年想跳槽&#xff0c;但没想到投十个能有两个面试机会就不错了&#xff0c;最后索性又回了阿里做架构。 他在面试的时候&#xff0c;碰见比自己大的面试官&#xff0c;态度和善&…...

php网站案例/杭州专业seo公司

基于arcgis访问postgis的方法 一、连接界面(基于arcgis desktop 10.4.1版本) postgresql数据库ipv4配置参数情况: 配置文件&#xff1a;D:\Program Files\PostgreSQL\9.4\data\pg_hba.conf # IPv4 local connections: host all all 127.0.0.1/32…...