【手撕算法系列】k-means
k-means
- k-means算法介绍
k-means算法介绍
K-means算法是一种用于聚类的迭代算法,它将数据集划分为K个簇,其中每个数据点属于与其最近的簇的中心。这个算法的目标是最小化簇内的平方和误差(簇内数据点与簇中心的距离的平方和)。
以下是K-means算法的基本步骤:
-
初始化中心点: 随机选择K个数据点作为初始的簇中心点。
-
分配数据点: 对于每个数据点,计算它与各个簇中心的距离,并将其分配给距离最近的簇。
-
更新簇中心: 对每个簇,计算其所有数据点的平均值,将该平均值作为新的簇中心。
重复步骤2和步骤3: 重复执行步骤2和步骤3,直到簇中心不再发生显著变化或达到预定的迭代次数。
收敛: 算法收敛于一组簇中心,每个数据点属于与其最近的中心。
import numpy as np
import matplotlib.pyplot as pltdef kmeans(X, k, max_iters=100, tol=1e-4):# 初始化簇中心centroids = X[np.random.choice(len(X), k, replace=False)]for _ in range(max_iters):# 计算每个点到簇中心的距离distances = np.linalg.norm(X[:, np.newaxis] - centroids, axis=2)# 分配每个点到最近的簇labels = np.argmin(distances, axis=1)# 计算新的簇中心new_centroids = np.array([X[labels == z].mean(axis=0) for z in range(k)])# 判断是否收敛if np.linalg.norm(new_centroids - centroids) < tol:breakcentroids = new_centroidsreturn centroids, labels# 生成一些随机样本数据
np.random.seed(42)
X, _ = make_blobs(n_samples=300, centers=4, random_state=42, cluster_std=1.0)# 使用自己实现的K-means算法进行聚类
centroids, labels = kmeans(X, k=4)# 绘制原始数据和簇中心
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', edgecolors='k', s=50, alpha=0.7)
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, linewidths=3, color='r', label='Centroids')
plt.title('K-means Clustering (Implemented)')
plt.legend()
plt.show()
相关文章:
【手撕算法系列】k-means
k-means k-means算法介绍 k-means算法介绍 K-means算法是一种用于聚类的迭代算法,它将数据集划分为K个簇,其中每个数据点属于与其最近的簇的中心。这个算法的目标是最小化簇内的平方和误差(簇内数据点与簇中心的距离的平方和)。 …...

D33|动态规划!启程!
1.动态规划五部曲: 1)确定dp数组(dp table)以及下标的含义 2)确定递推公式 3)dp数组如何初始化 4)确定遍历顺序 5)举例推导dp数组 2.动态规划应该如何debug 找问题的最好方式就是把…...

C语言----文件操作(二)
在上一篇文章中我们简单介绍了在C语言中文件是什么以及文件的打开和关闭操作,在实际工作中,我们不仅仅是要打开和关闭文件,二是需要对文件进行增删改写。本文将详细介绍如果对文件进行安全读写。 一,以字符形式读写文件ÿ…...
oracle 10046事件跟踪
10046事件是一个很好的排查sql语句执行缓慢的内部事件,具体设置方式如下: 根据10046事件跟踪SQL语句 1、 alter session set events 10046 trace name context forever,level 12; 2、执行SQL语句 3、关闭10046事件 alter session set events 10046 trace…...

微软自带浏览器Edge,无法关闭“保存历史记录网站的屏幕截图”解决方案
微软自带浏览器Edge,无法关闭“保存历史记录网站的屏幕截图”解决方案 吐槽1:Windows自带的Chrome内核版本的浏览器Microsofg Edge刚发布时可谓一股清流,启动速度快,占用内存较小,相信很多人也开始抛弃正代Chrome&…...

讲座 | 颠覆传统摄像方式乃至计算机视觉的“脉冲视觉”
传统相机拍摄视频时其实是以一定帧率进行采样,视频其实还是一串图片的集合,因此低帧率时会觉得视频卡,拍摄高速运动物体时会有运动模糊等等问题。然而你能想象这一切都可以被“脉冲视觉”这一前沿技术改变吗? 今天下午听了北京大学…...

uniGUI学习之UniHTMLMemo1富文本编辑器
1]系统自带的富文本编辑器 2]jQueryBootstarp富文本编辑器插件summernote.js 1]系统自带的富文本编辑器 1、末尾增加<p> 2、增加字体 3、解决滚屏问题 4、输入长度限制问题 5、显示 并 编辑 HTML源代码(主要是图片处理) 1、末尾增加<p> UniHTMLMemo1.Lines…...

详细教程 - 从零开发 鸿蒙harmonyOS应用 第四节 (鸿蒙Stage模型 登录页面 ArkTS版 推荐使用)
在鸿蒙OS中,Ability是应用程序提供的抽象功能,可以理解为一种功能。在应用程序中,一个页面即一种能力,如登录页面,即具有登录功能的能力。以下是对鸿蒙新建项目的登录代码功能的详细解读和工作流程的描述: …...
uniapp怎么实现授权登录
在Uniapp中实现授权登录通常涉及以下几个步骤: 创建登录按钮:在页面中创建一个按钮,用于触发登录操作。 获取用户授权:当用户点击登录按钮时,调用uni.login或uni.getUserInfo等API获取用户授权。 处理授权回调&#…...

从零开始:前端架构师的基础建设和架构设计之路
文章目录 一、引言二、前端架构师的职责三、基础建设四、架构设计思想五、总结《前端架构师:基础建设与架构设计思想》编辑推荐内容简介作者简介目录获取方式 一、引言 在现代软件开发中,前端开发已经成为了一个不可或缺的部分。随着互联网的普及和移动…...

椋鸟C语言笔记#26:数据在内存中的存储(大小端字节序)、浮点数的存储(IEEE754)
萌新的学习笔记,写错了恳请斧正。 目录 大小端字节序 什么是大小端 写一个判断大小端的程序 浮点数在内存中的存储(IEEE 754规则) 引入 存储规则解释 读取规则解释 1.阶码不全为0或全为1(规格化数) 2.阶码全为…...

设计模式——组合模式(结构型)
引言 组合模式是一种结构型设计模式, 你可以使用它将对象组合成树状结构, 并且能像使用独立对象一样使用它们。 问题 如果应用的核心模型能用树状结构表示, 在应用中使用组合模式才有价值。 例如, 你有两类对象: …...

鸿蒙小车之多任务调度实验
说到鸿蒙我们都会想到华为mate60:遥遥领先!我们一直领先! 我们这个小车也是采用的是鸿蒙操作系统,学习鸿蒙小车,让你遥遥领先于你的同学。 文章目录 前言一、什么是任务?为什么要有任务二、任务的状态三、任…...

【报错栏】(vue)Module not found: Error: Can‘t resolve ‘element-ui‘ in xxx
Module not found: Error: Cant resolve element-ui in xxx 报错原因是: 未安装 element-ui 依赖 解决: npm install element-ui 运行...

seaborn库图形进行数据分析(基于tips数据集)
Seaborn 是一个基于 matplotlib 的数据可视化库,可以用来绘制各种统计图表,包括散点图、条形图、折线图、箱线图等。Seaborn 提供了一些用于美化图表的默认样式和颜色主题,使得生成的图表更具有吸引力。下面是一些 Seaborn 库的常用功能和用法…...

AC843. n皇后问题--60
我们只需要把蓝色的往上移动就行了 if(!col[i][j]&&!dg[ui]&&!udg[])//1y(i)向下,x(u)向右为正。yxb的by-x一定>0,y-xb的bxy可能>0,这个不考虑,只看-bxy....
Js WebSocket类,收发Json,带心跳,断线重连
如题 心跳:4秒发一次 断线:2秒后自动重连 收发:发送和返回json,处理粘包断包等情况,json字符串最大长度9999 缓存:未连接时,自动缓存100个包,当连接时会自动发出 JS代码 var MyWeb…...

VBA技术资料MF96:单字段多条件高级筛选
我给VBA的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套,分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的入门,到…...

电子取证中Chrome各版本解密Cookies、LoginData账号密码、历史记录
文章目录 1.前置知识点2.对于80.X以前版本的解密拿masterkey的几种方法方法一 直接在目标机器运行Mimikatz提取方法二 转储lsass.exe 进程从内存提取masterkey方法三 导出SAM注册表 提取user hash 解密masterkey文件(有点麻烦不太推荐)方法四 已知用户密…...

Axure元件基本介绍进阶
Axure元件基本介绍进阶 1.Axure元件基本介绍1.在 Axure 中,元件是构建原型的基本构成单元,能够帮助设计师快速创建、重复使用和管理设计元素。以下是 Axure 中元件的基本介绍:1.基本元件: 2.基本元件的使用一.【举例说明】积木&am…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...