当前位置: 首页 > news >正文

MILP加速运算技巧——模型对称性的预处理

文章目录

  • 整数规划的对称性
    • 什么是对称性
    • 对称性的影响
  • 对称性的预处理方法


整数规划的对称性

什么是对称性

许多整数规划问题存在对称性,这种对称性是指问题解空间的对称,即在对称的解空间当中解的优化目标值上是相同的。这种对称性并不会改变问题的最优值,如果我们能够限制这种对称性,就能在不改变问题最优值的情况下,缩减问题可行空间的规模,因此很多MIP求解器会对模型的对称性做出检测并进行处理。

以生产排程问题为例,加入存在一批加工工件,每个工件基于它的产品类型有一个加工工艺,若工件1和工件2的加工工艺相同,此时,对于最终的生产方案而言,加工工件1和加工工件2的每个步骤的顺序进行调换,并不会影响问题的目标值,此时工件1和工件2相关的所有决策变量具有对称性。

又例如: 2 x 1 + 2 x 2 + x 3 ≤ 10 , x 1 ≤ 5 , x 2 ≤ 5 2x1+2x2+x3\leq 10, x1\leq 5, x2\leq 5 2x1+2x2+x310,x15,x25,目标函数是 3 x 1 + 3 x 2 + x 3 3x1+3x2+x3 3x1+3x2+x3,此时不论最终的结果如何, x 1 , x 2 x1,x2 x1,x2之间的解进行调换,都不会影响目标值,原因是 x 1 , x 2 x1,x2 x1,x2 不论是约束系数,还是边界,以及目标函数系数都相同,他们的最优解互相对调,也是一个最优解,两个变量具有对称性。

例如以Gurobi预处理为例:

# 添加约束
model.addConstr(2*x1+ 2*x2 + y <= 10)
model.addConstr(x1 <= 5)
model.addConstr(x2 <= 5)
model.addConstr(y >= 5)
# 定义目标函数
model.setObjective(3*x1 +3*x2 + y, sense=grb.GRB.MINIMIZE)

在求解日志当中,上述问题的所有约束和变量都被预处理过程确定下来,当 y y y 确定后, x 1 + x 2 x1+x2 x1+x2 的值能确定,且由于 x 1 , x 2 x1,x2 x1,x2 两个变量对称,所以问题的最优解不唯一。

...
Presolve removed 4 rows and 3 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
...

许多的整数规划问题当中都存在这样的特点,例如在车辆路径问题当中,有两个点到其他所有点的距离都一样,此时这两个点不论先通过哪个点都是一样的,但在求解问题当中,其中一个点在前的方案、以及另一个点在前的方案都包含在问题的可行域内,尽管两者是等价的。

对称性的影响

很显然,过于强烈的对称性有时候就会产生无效的搜索动作。特别是对于经典的精确搜索框架——分支定界,对称的变量会导致大量重复的待搜索节点(子问题),不论是界的收敛还是待剪支数量,对称性都会在这个过程中造成大量的无效动作。而这种具有对称性的等价变量越多,则问题当中等价的可行解就越多,相同节点也就越多,算法的搜索就会变慢。

对于一些问题而言,因为对称性导致原本不复杂的问题,往往难以直接通过求解器在可接受的时间内得到满意的解,因此对于这个混合整数变量的问题,需要采取一定的办法进行处理。

对称性的预处理方法

前面提到,这种等价变量的一个特点就是约束系数以及目标函数系数都一致,因此需要打破这种对称性,而这只需要改变系数的一致性即可,对于一些问题而言,这个动作能直接将求解问题的时间缩短几十上千倍。

一些求解器会建立具有任意目标函数系数的模型,而更一般性的方法是增加对称性割,即添加破坏这种对称性的约束条件:既然这些变量是等价变量,那就增加约束来使得这些变量的值不等价,有一个倾向性,减少算法搜索另一些等价的对称解空间,以此来提升算法效率,这对于大规模的且有大量等价变量的问题尤为重要。

对称性割的基本形式为:

d ⊤ x ≤ d ⊤ π ( x ) d^{\top}x \leq d^{\top}\pi (x) dxdπ(x)

其中, π \pi π是置换算子, d = ( 2 n − 1 , 2 x − 2 , . . . 2 0 ) d=(2^{n-1}, 2^{x-2},...2^0) d=(2n1,2x2,...20) n n n 是具有对称性的等价变量数量。例如当 n = 2 n=2 n=2,只有 x 1 , x 2 x1,x2 x1,x2 两个等价变量时,对称性割就为 x 1 + 2 x 2 ≤ x 2 + 2 x 1 x1+2x2\leq x2+2x1 x1+2x2x2+2x1,移项得 x 2 ≤ x 1 x2\leq x1 x2x1。这种约束就使得原本等价的两个解,只能有一个是满足该约束的,缩减了问题的解空间,加速了B&B算法的收敛。但值得注意的是,有大量等价变量不仅意味着对称性割的加速效果显著,也意味着添加的对称性割的数量庞大,减少了相同的节点,但增加了节点处问题的求解难度,在实际中仍需要进行一定的权衡。

相关文章:

MILP加速运算技巧——模型对称性的预处理

文章目录 整数规划的对称性什么是对称性对称性的影响 对称性的预处理方法 整数规划的对称性 什么是对称性 许多整数规划问题存在对称性&#xff0c;这种对称性是指问题解空间的对称&#xff0c;即在对称的解空间当中解的优化目标值上是相同的。这种对称性并不会改变问题的最优…...

JavaScript中的生成器与迭代器详解

一、迭代器与可迭代对象 1.什么是迭代器 迭代器&#xff08;iterator&#xff09;&#xff0c;使用户在容器对象&#xff08;container&#xff0c;例如链表或数组&#xff09;上遍访的对象&#xff0c;使用该接口无需关心对象的内部实现细节。 其行为像数据库中的光标&…...

WebLangChain_ChatGLM:结合 WebLangChain 和 ChatGLM3 的中文 RAG 系统

WebLangChain_ChatGLM 介绍 本文将详细介绍基于网络检索信息的检索增强生成系统&#xff0c;即 WebLangChain。通过整合 LangChain&#xff0c;成功将大型语言模型与最受欢迎的外部知识库之一——互联网紧密结合。鉴于中文社区中大型语言模型的蓬勃发展&#xff0c;有许多可供利…...

hive常用SQL函数及案例

1 函数简介 Hive会将常用的逻辑封装成函数给用户进行使用&#xff0c;类似于Java中的函数。 好处&#xff1a;避免用户反复写逻辑&#xff0c;可以直接拿来使用。 重点&#xff1a;用户需要知道函数叫什么&#xff0c;能做什么。 Hive提供了大量的内置函数&#xff0c;按照其特…...

分页操作中使用LIMIT和OFFSET后出现慢查询的原因分析

事情经过 最近在做批量数据处理的相关业务&#xff0c;在和下游对接时&#xff0c;发现拉取他们的业务数据刚开始很快&#xff0c;后面会越来越慢&#xff0c;40万数据一个小时都拉不完。经过排查后&#xff0c;发现对方用了很坑的分页查询方式 —— LIMIT OFFSET&#xff0c;…...

Java八股文面试全套真题【含答案】- Redis篇

请看下面列举的50个关于Redis的经典面试问题和简短答案&#xff1a; Redis是什么&#xff1f;简要介绍一下Redis的特点。 Redis是一个开源的高性能键值存储数据库&#xff0c;支持多种数据结构&#xff0c;如字符串、列表、集合、哈希和有序集合等。 特点包括快速、可持久化、支…...

【C++11特性篇】一文助小白轻松理解 C++中的【左值&左值引用】【右值&右值引用】

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.【左值&#xff06;左值引用】&…...

动态规划——OJ题(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、第N个泰波那契数1、题目讲解2、思路讲解3、代码实现 二、三步问题1、题目讲解2、思路讲解…...

六:爬虫-数据解析之BeautifulSoup4

六&#xff1a;bs4简介 基本概念&#xff1a; 简单来说&#xff0c;Beautiful Soup是python的一个库&#xff0c;最主要的功能是从网页抓取数据官方解释如下&#xff1a; Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。 它是一个工具箱…...

音频筑基:总谐波失真THD+N指标

音频筑基&#xff1a;总谐波失真THDN指标 THDN含义深入理解 在分析音频信号中&#xff0c;THDN指标是我们经常遇到的概念&#xff0c;这里谈谈自己的理解。 THDN含义 首先&#xff0c;理解THD的定义&#xff1a; THD&#xff0c;Total Harmonic Distortion&#xff0c;总谐波…...

自动驾驶技术:驶向未来的智能之路

导言 自动驾驶技术正引领着汽车产业向着更安全、高效、智能的未来演进。本文将深入研究自动驾驶技术的核心原理、关键技术、应用场景以及对交通、社会的深远影响。 1. 简介 自动驾驶技术是基于先进传感器、计算机视觉、机器学习等技术的创新&#xff0c;旨在实现汽车在不需要人…...

TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction

TIGRE: 用于CBCT图像重建的MATLAB-GPU工具箱 论文链接&#xff1a;https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010 项目链接&#xff1a;https://github.com/CERN/TIGRE Abstract 本文介绍了基于层析迭代GPU的重建(TIGRE)工具箱&#xff0c;这是一个用于…...

我的NPI项目之Android 安全系列 -- EMVCo

最近一直在和支付有关的内容纠缠&#xff0c;原来我负责的产品后面还要过EMVCo的认证。于是&#xff0c;就网上到处找找啥事EMVCo&#xff0c;啥是EMVCo&#xff0c;啥是EMVCo。 于是找到了一个神奇的个人网站&#xff1a;Ganeshji Marwaha 虽然时间有点久远&#xff0c;但是用…...

vue中实现使用相框点击拍照,canvas进行前端图片合并下载

拍照和相框合成,下载图片dome 一、canvas介绍 Canvas是一个HTML5元素,它提供了一个用于在网页上绘制图形、图像和动画的2D渲染上下文。Canvas可以用于创建各种图形,如线条、矩形、圆形、文本等,并且可以通过JavaScript进行编程操作。 Canvas元素本身是一个矩形框,可以通…...

边缘检测@获取labelme标注的json黑白图掩码mask

import cv2 as cv import numpy as np import json import os from PIL import Imagedef convertPolygonToMask(jsonfilePath):...

嵌入式培训-数据结构-day23-线性表

线性表 线性表是包含若干数据元素的一个线性序列 记为&#xff1a; L(a0, ...... ai-1, ai, ai1 ...... an-1) L为表名&#xff0c;ai (0≤i≤n-1)为数据元素&#xff1b; n为表长,n>0 时&#xff0c;线性表L为非空表&#xff0c;否则为空表。 线性表L可用二元组形式描述…...

C# DotNetCore AOP简单实现

背景 实际开发中业务和日志尽量不要相互干扰嵌套&#xff0c;否则很难维护和调试。 示例 using System.Reflection;namespace CSharpLearn {internal class Program{static void Main(){int age 25;string name "bingling";Person person new(age, name);Conso…...

19.Tomcat搭建

Tomcat 简介 Tomcat的安装和启动 前置条件 • JDK 已安装(JAVA_HOME环境变量已被成功配置) Windows 下安装 访问 http://tomcat.apache.org ⇒ 左侧边栏 “Download” 2. 解压缩下载的文件到 “D:\tomcat”, tomcat的内容最终被解压到 “D:\tomcat\apache-tomcat-9.0.84” 3.…...

HarmonyOS云开发基础认证考试满分答案(100分)【全网最全-不断更新】【鸿蒙专栏-29】

系列文章&#xff1a; HarmonyOS应用开发者基础认证满分答案&#xff08;100分&#xff09; HarmonyOS应用开发者基础认证【闯关习题 满分答案】 HarmonyOS应用开发者高级认证满分答案&#xff08;100分&#xff09; HarmonyOS云开发基础认证满分答案&#xff08;100分&#xf…...

Unity项目里Log系统该怎么设计

其实并没有想完整就设计一个好用的Log系统&#xff0c;然后发出来。记录这个的原因&#xff0c;是在书里看到这么一句话&#xff0c;Log会消耗资源&#xff0c;特别是写文件&#xff0c;因此可以设置一个Log缓冲区&#xff0c;等缓冲区满了再一次性写入文件&#xff0c;以节省资…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis&#xff1f;2.为什么要使用redis作为mysql的缓存&#xff1f;3.什么是缓存雪崩、缓存穿透、缓存击穿&#xff1f;3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

Linux 下 DMA 内存映射浅析

序 系统 I/O 设备驱动程序通常调用其特定子系统的接口为 DMA 分配内存&#xff0c;但最终会调到 DMA 子系统的dma_alloc_coherent()/dma_alloc_attrs() 等接口。 关于 dma_alloc_coherent 接口详细的代码讲解、调用流程&#xff0c;可以参考这篇文章&#xff0c;我觉得写的非常…...

在Zenodo下载文件 用到googlecolab googledrive

方法&#xff1a;Figshare/Zenodo上的数据/文件下载不下来&#xff1f;尝试利用Google Colab &#xff1a;https://zhuanlan.zhihu.com/p/1898503078782674027 参考&#xff1a; 通过Colab&谷歌云下载Figshare数据&#xff0c;超级实用&#xff01;&#xff01;&#xff0…...