当前位置: 首页 > news >正文

MILP加速运算技巧——模型对称性的预处理

文章目录

  • 整数规划的对称性
    • 什么是对称性
    • 对称性的影响
  • 对称性的预处理方法


整数规划的对称性

什么是对称性

许多整数规划问题存在对称性,这种对称性是指问题解空间的对称,即在对称的解空间当中解的优化目标值上是相同的。这种对称性并不会改变问题的最优值,如果我们能够限制这种对称性,就能在不改变问题最优值的情况下,缩减问题可行空间的规模,因此很多MIP求解器会对模型的对称性做出检测并进行处理。

以生产排程问题为例,加入存在一批加工工件,每个工件基于它的产品类型有一个加工工艺,若工件1和工件2的加工工艺相同,此时,对于最终的生产方案而言,加工工件1和加工工件2的每个步骤的顺序进行调换,并不会影响问题的目标值,此时工件1和工件2相关的所有决策变量具有对称性。

又例如: 2 x 1 + 2 x 2 + x 3 ≤ 10 , x 1 ≤ 5 , x 2 ≤ 5 2x1+2x2+x3\leq 10, x1\leq 5, x2\leq 5 2x1+2x2+x310,x15,x25,目标函数是 3 x 1 + 3 x 2 + x 3 3x1+3x2+x3 3x1+3x2+x3,此时不论最终的结果如何, x 1 , x 2 x1,x2 x1,x2之间的解进行调换,都不会影响目标值,原因是 x 1 , x 2 x1,x2 x1,x2 不论是约束系数,还是边界,以及目标函数系数都相同,他们的最优解互相对调,也是一个最优解,两个变量具有对称性。

例如以Gurobi预处理为例:

# 添加约束
model.addConstr(2*x1+ 2*x2 + y <= 10)
model.addConstr(x1 <= 5)
model.addConstr(x2 <= 5)
model.addConstr(y >= 5)
# 定义目标函数
model.setObjective(3*x1 +3*x2 + y, sense=grb.GRB.MINIMIZE)

在求解日志当中,上述问题的所有约束和变量都被预处理过程确定下来,当 y y y 确定后, x 1 + x 2 x1+x2 x1+x2 的值能确定,且由于 x 1 , x 2 x1,x2 x1,x2 两个变量对称,所以问题的最优解不唯一。

...
Presolve removed 4 rows and 3 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
...

许多的整数规划问题当中都存在这样的特点,例如在车辆路径问题当中,有两个点到其他所有点的距离都一样,此时这两个点不论先通过哪个点都是一样的,但在求解问题当中,其中一个点在前的方案、以及另一个点在前的方案都包含在问题的可行域内,尽管两者是等价的。

对称性的影响

很显然,过于强烈的对称性有时候就会产生无效的搜索动作。特别是对于经典的精确搜索框架——分支定界,对称的变量会导致大量重复的待搜索节点(子问题),不论是界的收敛还是待剪支数量,对称性都会在这个过程中造成大量的无效动作。而这种具有对称性的等价变量越多,则问题当中等价的可行解就越多,相同节点也就越多,算法的搜索就会变慢。

对于一些问题而言,因为对称性导致原本不复杂的问题,往往难以直接通过求解器在可接受的时间内得到满意的解,因此对于这个混合整数变量的问题,需要采取一定的办法进行处理。

对称性的预处理方法

前面提到,这种等价变量的一个特点就是约束系数以及目标函数系数都一致,因此需要打破这种对称性,而这只需要改变系数的一致性即可,对于一些问题而言,这个动作能直接将求解问题的时间缩短几十上千倍。

一些求解器会建立具有任意目标函数系数的模型,而更一般性的方法是增加对称性割,即添加破坏这种对称性的约束条件:既然这些变量是等价变量,那就增加约束来使得这些变量的值不等价,有一个倾向性,减少算法搜索另一些等价的对称解空间,以此来提升算法效率,这对于大规模的且有大量等价变量的问题尤为重要。

对称性割的基本形式为:

d ⊤ x ≤ d ⊤ π ( x ) d^{\top}x \leq d^{\top}\pi (x) dxdπ(x)

其中, π \pi π是置换算子, d = ( 2 n − 1 , 2 x − 2 , . . . 2 0 ) d=(2^{n-1}, 2^{x-2},...2^0) d=(2n1,2x2,...20) n n n 是具有对称性的等价变量数量。例如当 n = 2 n=2 n=2,只有 x 1 , x 2 x1,x2 x1,x2 两个等价变量时,对称性割就为 x 1 + 2 x 2 ≤ x 2 + 2 x 1 x1+2x2\leq x2+2x1 x1+2x2x2+2x1,移项得 x 2 ≤ x 1 x2\leq x1 x2x1。这种约束就使得原本等价的两个解,只能有一个是满足该约束的,缩减了问题的解空间,加速了B&B算法的收敛。但值得注意的是,有大量等价变量不仅意味着对称性割的加速效果显著,也意味着添加的对称性割的数量庞大,减少了相同的节点,但增加了节点处问题的求解难度,在实际中仍需要进行一定的权衡。

相关文章:

MILP加速运算技巧——模型对称性的预处理

文章目录 整数规划的对称性什么是对称性对称性的影响 对称性的预处理方法 整数规划的对称性 什么是对称性 许多整数规划问题存在对称性&#xff0c;这种对称性是指问题解空间的对称&#xff0c;即在对称的解空间当中解的优化目标值上是相同的。这种对称性并不会改变问题的最优…...

JavaScript中的生成器与迭代器详解

一、迭代器与可迭代对象 1.什么是迭代器 迭代器&#xff08;iterator&#xff09;&#xff0c;使用户在容器对象&#xff08;container&#xff0c;例如链表或数组&#xff09;上遍访的对象&#xff0c;使用该接口无需关心对象的内部实现细节。 其行为像数据库中的光标&…...

WebLangChain_ChatGLM:结合 WebLangChain 和 ChatGLM3 的中文 RAG 系统

WebLangChain_ChatGLM 介绍 本文将详细介绍基于网络检索信息的检索增强生成系统&#xff0c;即 WebLangChain。通过整合 LangChain&#xff0c;成功将大型语言模型与最受欢迎的外部知识库之一——互联网紧密结合。鉴于中文社区中大型语言模型的蓬勃发展&#xff0c;有许多可供利…...

hive常用SQL函数及案例

1 函数简介 Hive会将常用的逻辑封装成函数给用户进行使用&#xff0c;类似于Java中的函数。 好处&#xff1a;避免用户反复写逻辑&#xff0c;可以直接拿来使用。 重点&#xff1a;用户需要知道函数叫什么&#xff0c;能做什么。 Hive提供了大量的内置函数&#xff0c;按照其特…...

分页操作中使用LIMIT和OFFSET后出现慢查询的原因分析

事情经过 最近在做批量数据处理的相关业务&#xff0c;在和下游对接时&#xff0c;发现拉取他们的业务数据刚开始很快&#xff0c;后面会越来越慢&#xff0c;40万数据一个小时都拉不完。经过排查后&#xff0c;发现对方用了很坑的分页查询方式 —— LIMIT OFFSET&#xff0c;…...

Java八股文面试全套真题【含答案】- Redis篇

请看下面列举的50个关于Redis的经典面试问题和简短答案&#xff1a; Redis是什么&#xff1f;简要介绍一下Redis的特点。 Redis是一个开源的高性能键值存储数据库&#xff0c;支持多种数据结构&#xff0c;如字符串、列表、集合、哈希和有序集合等。 特点包括快速、可持久化、支…...

【C++11特性篇】一文助小白轻松理解 C++中的【左值&左值引用】【右值&右值引用】

前言 大家好吖&#xff0c;欢迎来到 YY 滴C系列 &#xff0c;热烈欢迎&#xff01; 本章主要内容面向接触过C的老铁 主要内容含&#xff1a; 欢迎订阅 YY滴C专栏&#xff01;更多干货持续更新&#xff01;以下是传送门&#xff01; 目录 一.【左值&#xff06;左值引用】&…...

动态规划——OJ题(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、第N个泰波那契数1、题目讲解2、思路讲解3、代码实现 二、三步问题1、题目讲解2、思路讲解…...

六:爬虫-数据解析之BeautifulSoup4

六&#xff1a;bs4简介 基本概念&#xff1a; 简单来说&#xff0c;Beautiful Soup是python的一个库&#xff0c;最主要的功能是从网页抓取数据官方解释如下&#xff1a; Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。 它是一个工具箱…...

音频筑基:总谐波失真THD+N指标

音频筑基&#xff1a;总谐波失真THDN指标 THDN含义深入理解 在分析音频信号中&#xff0c;THDN指标是我们经常遇到的概念&#xff0c;这里谈谈自己的理解。 THDN含义 首先&#xff0c;理解THD的定义&#xff1a; THD&#xff0c;Total Harmonic Distortion&#xff0c;总谐波…...

自动驾驶技术:驶向未来的智能之路

导言 自动驾驶技术正引领着汽车产业向着更安全、高效、智能的未来演进。本文将深入研究自动驾驶技术的核心原理、关键技术、应用场景以及对交通、社会的深远影响。 1. 简介 自动驾驶技术是基于先进传感器、计算机视觉、机器学习等技术的创新&#xff0c;旨在实现汽车在不需要人…...

TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction

TIGRE: 用于CBCT图像重建的MATLAB-GPU工具箱 论文链接&#xff1a;https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010 项目链接&#xff1a;https://github.com/CERN/TIGRE Abstract 本文介绍了基于层析迭代GPU的重建(TIGRE)工具箱&#xff0c;这是一个用于…...

我的NPI项目之Android 安全系列 -- EMVCo

最近一直在和支付有关的内容纠缠&#xff0c;原来我负责的产品后面还要过EMVCo的认证。于是&#xff0c;就网上到处找找啥事EMVCo&#xff0c;啥是EMVCo&#xff0c;啥是EMVCo。 于是找到了一个神奇的个人网站&#xff1a;Ganeshji Marwaha 虽然时间有点久远&#xff0c;但是用…...

vue中实现使用相框点击拍照,canvas进行前端图片合并下载

拍照和相框合成,下载图片dome 一、canvas介绍 Canvas是一个HTML5元素,它提供了一个用于在网页上绘制图形、图像和动画的2D渲染上下文。Canvas可以用于创建各种图形,如线条、矩形、圆形、文本等,并且可以通过JavaScript进行编程操作。 Canvas元素本身是一个矩形框,可以通…...

边缘检测@获取labelme标注的json黑白图掩码mask

import cv2 as cv import numpy as np import json import os from PIL import Imagedef convertPolygonToMask(jsonfilePath):...

嵌入式培训-数据结构-day23-线性表

线性表 线性表是包含若干数据元素的一个线性序列 记为&#xff1a; L(a0, ...... ai-1, ai, ai1 ...... an-1) L为表名&#xff0c;ai (0≤i≤n-1)为数据元素&#xff1b; n为表长,n>0 时&#xff0c;线性表L为非空表&#xff0c;否则为空表。 线性表L可用二元组形式描述…...

C# DotNetCore AOP简单实现

背景 实际开发中业务和日志尽量不要相互干扰嵌套&#xff0c;否则很难维护和调试。 示例 using System.Reflection;namespace CSharpLearn {internal class Program{static void Main(){int age 25;string name "bingling";Person person new(age, name);Conso…...

19.Tomcat搭建

Tomcat 简介 Tomcat的安装和启动 前置条件 • JDK 已安装(JAVA_HOME环境变量已被成功配置) Windows 下安装 访问 http://tomcat.apache.org ⇒ 左侧边栏 “Download” 2. 解压缩下载的文件到 “D:\tomcat”, tomcat的内容最终被解压到 “D:\tomcat\apache-tomcat-9.0.84” 3.…...

HarmonyOS云开发基础认证考试满分答案(100分)【全网最全-不断更新】【鸿蒙专栏-29】

系列文章&#xff1a; HarmonyOS应用开发者基础认证满分答案&#xff08;100分&#xff09; HarmonyOS应用开发者基础认证【闯关习题 满分答案】 HarmonyOS应用开发者高级认证满分答案&#xff08;100分&#xff09; HarmonyOS云开发基础认证满分答案&#xff08;100分&#xf…...

Unity项目里Log系统该怎么设计

其实并没有想完整就设计一个好用的Log系统&#xff0c;然后发出来。记录这个的原因&#xff0c;是在书里看到这么一句话&#xff0c;Log会消耗资源&#xff0c;特别是写文件&#xff0c;因此可以设置一个Log缓冲区&#xff0c;等缓冲区满了再一次性写入文件&#xff0c;以节省资…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...