当前位置: 首页 > news >正文

.gitignore和git lfs学习

The ninth day——12.18


1. .gitignore

忽略规则优先级
  1. 从命令行中读取可用的忽略规则
  2. 当前目录定义的规则
  3. 父级目录定义的规则,依次递推
  4. $GIT_DIR/info/exclude 文件中定义的规则
  5. core.excludesfile中定义的全局规则
忽略规则匹配语法
空格不匹配任意文件,可作为分隔符,可用反斜杠转义
开头的文件标识 注释,可以使用反斜杠进行转义
! 开头的模式标识否定,该文件将会再次被包含,如果排除了该文件的父级目录,则使用 ! 也不会再次被包含。可以使用反斜杠进行转义
/ 结束的模式只匹配文件夹以及在该文件夹路径下的内容,但是不匹配该文件
/ 开始的模式匹配项目跟目录
如果一个模式不包含斜杠,则它匹配相对于当前 .gitignore 文件路径的内容,如果该模式不在 .gitignore 文件中,则相对于项目根目录
** 匹配多级目录,可在开始,中间,结束
? 通用匹配单个字符
* 通用匹配零个或多个字符
[] 通用匹配单个字符列表
示例:
bin/: 忽略当前路径下的bin文件夹,该文件夹下的所有内容都会被忽略,不忽略 bin 文件
/bin: 忽略根目录下的bin文件
/*.c: 忽略 cat.c,不忽略 build/cat.c
debug/*.obj: 忽略 debug/io.obj,不忽略 debug/common/io.obj 和 tools/debug/io.obj
**/foo: 忽略/foo, a/foo, a/b/foo等
a/**/b: 忽略a/b, a/x/b, a/x/y/b等
!/bin/run.sh: 不忽略 bin 目录下的 run.sh 文件
*.log: 忽略所有 .log 文件
config.php: 忽略当前路径的 config.php 文件
不生效情况
  1. 已纳入版本管理
    solve:删除本地缓存
git rm -r --cached .
git add .
git commit -m 'update .gitignore'
  1. 添加文件被忽略
  • 强制添加
$ git add -f App.class
  • 检查gitignore
$ git check-ignore -v filename.

git lfs

LFS作用

在开发比较轻量化的代码时,开发的速度不会受到git上传下载速度的影响,但是随着系统的复杂度增加,代码中关联到的文件越来越多,其中二进制文件发生变化时,git需要存储每次提交的变动,导致本地git仓库越来越大,上传下载速度也受到了很大影响。
Large File Storge,可以帮助我们管理比较大的文件,git lfs对于需要追踪的文件只会保存一个指向该文件的指针,而不是在本地仓库中保存每次提交的版本,节省了本地磁盘空间,缩小了git的传输时间。

相关文章:

.gitignore和git lfs学习

The ninth day——12.18 1. .gitignore 忽略规则优先级 从命令行中读取可用的忽略规则当前目录定义的规则父级目录定义的规则,依次递推$GIT_DIR/info/exclude 文件中定义的规则core.excludesfile中定义的全局规则 忽略规则匹配语法 空格不匹配任意文件&#xff…...

2023-12-18 C语言实现一个最简陋的B-Tree

点击 <C 语言编程核心突破> 快速C语言入门 C语言实现一个最简陋的B-Tree 前言要解决问题:想到的思路:其它的补充: 一、C语言B-Tree基本架构: 二、可视化总结 前言 要解决问题: 实现一个最简陋的B-Tree, 研究B-Tree的性质. 对于B树, 我是心向往之, 因为他是数据库的基…...

vite与webpack?

vite对比react-areate-app 1、构建速度 2、打包速度 3、打包文件体积...

距离矩阵路径优化Python Dijkstra(迪杰斯特拉)算法和冲突驱动子句学习

Dijkstra算法 Dijkstra 算法是一种流行的寻路算法&#xff0c;通常用于基于图的问题&#xff0c;例如在地图上查找两个城市之间的最短路径、确定送货卡车可能采取的最短路径&#xff0c;甚至创建游戏地图。其背后的直觉基于以下原则&#xff1a;从起始顶点访问所有相邻顶点&am…...

Selenium安装WebDriver:ChromeDriver与谷歌浏览器版本快速匹配_最新版120

最近在使用通过selenium操作Chrome浏览器时&#xff0c;安装中遇到了Chrome版本与浏览器驱动不匹配的的问题&#xff0c;在此记录安装下过程&#xff0c;如何快速找到与谷歌浏览器相匹配的ChromeDriver驱动版本。 1. 确定Chrome版本 我们首先确定自己的Chrome版本 Chrome设置…...

系统架构设计师教程(七)系统架构设计基础知识

系统架构设计基础知识 7.1 软件架构概念7.1.1 软件架构的定义7.1.2 软件架构设计与生命周期需求分析阶段设计阶段实现阶段构件组装阶段部署阶段后开发阶段 7.1.3 软件架构的重要性 7.2 基于架构的软件开发方法7.2.1 体系结构的设计方法概述7.2.2 概念与术语7.2.3 基于体系结构的…...

Bifrost 中间件 X-Requested-With 系统身份认证绕过漏洞复现

0x01 产品简介 Bifrost是一款面向生产环境的 MySQL,MariaDB,kafka 同步到Redis,MongoDB,ClickHouse等服务的异构中间件 0x02 漏洞概述 Bifrost 中间件 X-Requested-With 存在身份认证绕过漏洞,未经身份认证的攻击者可未授权创建管理员权限账号,可通过删除请求头实现身…...

OpenSSL 3.2.0新增Argon2支持——防GPU暴力攻击

1. 引言 OpenSSL新发布的3.20版本中&#xff0c;引入了一些新特性&#xff0c;包括&#xff1a; post-quantum方法Brainpool曲线QUICArgon2&#xff1a;Argon2 是一种慢哈希函数&#xff0c;在 2015 年获得 Password Hashing Competition 冠军&#xff0c;利用大量内存计算抵…...

数据结构--稀疏矩阵及Java实现

一、稀疏 sparsearray 数组 1、先看一个实际的需求 编写的五子棋程序中&#xff0c;有存盘退出和续上盘的功能。 分析问题: 因为该二维数组的很多值是默认值 0, 因此记录了很多没有意义的数据.->稀疏数组。 2、稀疏数组基本介绍 当一个数组中大部分元素为&#xff10;…...

关于GPU使用过程中的若干问题

1.CUDA异常 问题描述&#xff1a;运行torch.cuda.is_available() 报错&#xff1a;cuda unknown error - this may be due to an incorrectly set up environment解决方案&#xff1a;重启 2.nvidia驱动版本不匹配 问题描述&#xff1a;运行nvidis-smi 报错&#xff1a;Fa…...

spring之面向切面:AOP(2)

学习的最大理由是想摆脱平庸&#xff0c;早一天就多一份人生的精彩&#xff1b;迟一天就多一天平庸的困扰。各位小伙伴&#xff0c;如果您&#xff1a; 想系统/深入学习某技术知识点… 一个人摸索学习很难坚持&#xff0c;想组团高效学习… 想写博客但无从下手&#xff0c;急需…...

【开题报告】基于uniapp的家庭记账小程序的设计与实现

1.研究背景 随着社会经济的发展和人们生活水平的提高&#xff0c;家庭财务管理变得越来越重要。家庭记账是一种重要的财务管理方式&#xff0c;通过记录和分析家庭的收入和支出情况&#xff0c;可以帮助家庭成员更好地理解和掌握自己的财务状况&#xff0c;合理规划和管理家庭…...

HTML5面试题

HTML5面试题 什么是HTML5&#xff1f;它与HTML4有何不同之处&#xff1f; HTML5是HTML的第五个主要版本&#xff0c;它引入了许多新的语义化元素、API和功能&#xff0c;以改进网页的结构、样式、交互和多媒体体验。 HTML5与HTML4的不同之处包括&#xff1a; 引入了一系列新的语…...

树莓派通过网线连接电脑并且设置设置链接wifi

好久没玩过树莓派了&#xff0c;系统进不去了&#xff0c;需要记录一下&#xff0c;之前总觉得自己会了&#xff0c;但是还是需要不断的翻阅资料。 树莓派 配置SD卡开启ssh - 哔哩哔哩 树莓派通过网线连接ssh 直接在sd卡建立一个ssh的文件&#xff0c;不要带任何后戳 ip查…...

C#拼接JSON

一、业务背景 最近项目需要与U8c对接&#xff0c;实现增删改查&#xff0c;借此机会&#xff0c;梳理一下C#解析Json字符串的问题。 这篇文章&#xff0c;先以新增接口为例。 二、新增接口 查看需要传入的json格式。 拼接json&#xff0c;无非就是{}和[]的来回嵌套。 首先&am…...

评价机器学习模型的指标

为了衡量一个机器学习模型的好坏&#xff0c;需要给定一个测试集&#xff0c;用模型对测试集中的每一个样本进行预测&#xff0c;并根据预测结果计算评价分数。 对于分类问题&#xff0c;常见的评价标准有准确率、精确率、召回率和F值等。给定测试集 &#x1d4af; {(&#x1…...

C# WPF上位机开发(日志调试)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 程序开发的过程中&#xff0c;调试肯定是少不了的。比如说&#xff0c;这个时候&#xff0c;我们可以设置断点、查看变量、检查函数调用堆栈等等。…...

AR室内导航如何实现?技术与原理分析

随着科技的进步&#xff0c;我们生活中许多方面正在被重新定义。其中之一就是导航&#xff0c;尤其是室内导航。增强现实&#xff08;AR&#xff09;技术的出现为室内导航带来了革命性的变革。本文将深入探讨AR室内导航的技术与原理&#xff0c;以及它如何改变我们的生活方式。…...

计算机网络:物理层(奈氏准则和香农定理,含例题)

带你速通计算机网络期末 文章目录 一、码元和带宽 1、什么是码元 2、数字通信系统数据传输速率的两种表示方法 2.1、码元传输速率 2.2、信息传输速率 3、例题 3.1、例题1 3.2、例题2 4、带宽 二、奈氏准则&#xff08;奈奎斯特定理&#xff09; 1、奈氏准则简介 2、…...

天津仁爱学院专升本化学工程与工艺专业 《无机化学》考试大纲

天津仁爱学院化学工程与工艺专业高职升本入学考试《无机化学》课程考试大纲 一&#xff0e;参考教材 杨宏孝《无机化学简明教程》以及《无机化学简明教程学习指南》&#xff0c;高等教育出版社&#xff0c;2011年版。 二&#xff0e;考试基本要求 本考试要求将《无机化学》…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...