当前位置: 首页 > news >正文

(四)STM32 操作 GPIO 点亮 LED灯 / GPIO工作模式

目录

1. STM32 工程模板中的工程目录介绍

2. GPIO 简介

3. GPIO 框图剖析

        1)保护二极管及上、下拉电阻

        2) P-MOS 管和 N-MOS 管

        3)输出数据寄存器

        3.1)ODR 端口输出数据寄存器

        3.2)BSRR 端口位设置/清除寄存器 

        4)复用功能输出

         5)输入数据寄存器

        6)复用功能输入

        7)模拟输入输出

4. GPIO 工作模式

        1)输入模式(模拟/浮空/上拉/下拉)

        2)输出模式(推挽/开漏)

        3)复用功能(推挽/开漏)

5. 实验—— 操作GPIO 点亮 LED 灯

5.1 硬件连接图

5.2 程序代码


1. STM32 工程模板中的工程目录介绍

        上节我们已经说明了,如何去建立一个 STM32 的工程模板,这节我们在此模板的基础上进行操作单片机 IO 口,输出高低电平,控制 LED 的闪烁。

        在讲解 STM32 的 GPIO 之前,首先打开之前的工程模板,对实验工程目录进行一个简单的介绍:

         ① 组 USER 下面存放的主要是用户代码。system_stm32f10x.c 里面主要是系统时钟初始化函数 SystemInit 相关的定义,一般情况下文件用户不需要修改(如果需要修改系统时钟,请看下一篇文章,会具体讲解)。stm32f10x_it.c 里面存放的是部分中断服务函数,不需要修改(一般我们都把中断函数放在了中断初始化函数之后,方便查找)。main.c 函数主要存放的是主函数了,这个大家应该很清楚。

        ② 组 HARDWARE 下面存放的是每个实验的外设驱动代码,他的实现是通过调用 FWLib下面的固件库文件实现的,比如 led.c 里面调用 stm32f10x_gpio.c 里面的函数对 led 进行初始化,这里面的函数是讲解的重点。后面的实验中可以看到会引入多个源文件。

        ③ 组 SYSTEM 是正点原子提供的共用代码,包含 Systick 延时函数,IO 口位带操作以及串口相关函数。这个文件主要是我们不用再自己去敲写 延时函数,并且可以进行位带操作。封装好的,大家可以直接用,想深入了解的可以自己查看源代码是怎么实现的。

        ④ 组 CORE 下面存放的是固件库必须的 核心文件和启动文件。这里面的文件用户不需要修改。

        ⑤ 组 FWLib 下面存放的是 ST 官方提供的外设驱动固件库文件,这些文件大家可以根据工程需要来添加和删除。每个 stm32f10x_ppp.c 源文件对应一个 stm32f10x_ppp.h 头文件。这是 ST 官方给我们写好的驱动 芯片外设的 固件库函数,相当于你学 C 语言,调用一些人家给你写好的库函数一样,直接调用即可,自己也可以深究。

        ⑥ 组 README 主要就是添加了 README.TXT 说明文件,对实验操作进行相关说明。

那么这些组之间的层析结构:

        从层次图中可以看出,我们的 用户代码 和 HARDWARE 下面的外设驱动代码再不需要直接操作寄存器,而是直接或间接操作官方提供的固件库函数。其实固件库函数的底层逻辑就是操作的是寄存器,但人家为了开发效率,已经帮我们封装好了,无需再去操作寄存器去驱动外设。但是,当用好固件库后,可以自己深究一下寄存器,会对整个 STM32 的系统架构,固件库有更深的理解。

2. GPIO 简介

        GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚,STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。STM32 芯片的 GPIO被分成很多组,每组有 16 个引脚,如型号为 STM32F103ZET6 型号的芯片有 GPIOA、GPIOB、GPIOC 至 GPIOG 共 7 组 GPIO,芯片一共 144 个引脚,其中 GPIO 就占了一大部分,所有的 GPIO引脚都有基本的输入输出功能。
        最基本的输出功能是由 STM32 控制引脚输出高、低电平,实现开关控制,如把 GPIO 引脚接入到 LED 灯,那就可以控制 LED 灯的亮灭,引脚接入到继电器或三极管,那就可以通过继电器或
三极管控制外部大功率电路的通断。

        每个 IO 口可以自由编程,但 IO 口寄存器必须要按 32 位字被访问。STM32 的很多 IO 口都是 5V 兼容的,这些 IO 口在与 5V 电平的外设连接的时候很有优势,具体哪些 IO 口是 5V 兼容的,可以从该芯片的 数据手册 管脚描述章节查到(I/O Level 标 FT 的就是 5V 电平兼容的)。
        STM32 的每个 IO 端口都有 7 个寄存器来控制。他们分别是:配置模式的 2 个 32 位的端口配置寄存器 CRL 和 CRH;2 个 32 位的数据寄存器 IDR 和 ODR;1 个 32 位的置位/复位寄存器BSRR;一个 16 位的复位寄存器 BRR;1 个 32 位的锁存寄存器 LCKR。大家如果想要了解每个寄存器的详细使用方法,可以参考《STM32 中文参考手册 V10》P105~P129。

3. GPIO 框图剖析

        通过 GPIO 硬件结构框图,就可以从整体上深入了解 GPIO 外设及它的各种应用模式。该图从最右端看起,最右端就是代表 STM32 芯片引出的 GPIO 引脚,其余部件都位于芯片内部。 

        1)保护二极管及上、下拉电阻

        引脚的两个保护二级管可以防止引脚外部过高或过低的电压输入,当引脚电压高于 VDD 时,上方的二极管导通,当引脚电压低于 VSS 时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。尽管有这样的保护,并不意味着 STM32 的引脚能直接外接大功率驱动器件,如直接驱
动电机,强制驱动要么电机不转,要么导致芯片烧坏,必须要加大功率及隔离电路驱动。

        2) P-MOS 管和 N-MOS 管

        GPIO 引脚线路经过两个保护二极管后,向上流向“输入模式”结构向下流向“输出模式”结构。
        先看输出模式部分,线路经过一个由 P-MOS 和 N-MOS 管组成的单元电路。这个结构使 GPIO 具有了 “推挽输出” 和 “开漏输出” 两种模式。
        所谓的推挽输出模式,是根据这两个 MOS 管的工作方式来命名的。在该结构中输入高电平时,经过反向后,上方的 P-MOS 导通,下方的 N-MOS 关闭,对外输出高电平;而在该结构中输入低电平时,经过反向后,N-MOS 管导通,P-MOS 关闭,对外输出低电平。当引脚高低电平切换时,两个管子轮流导通,P 管负责灌电流,N 管负责拉电流,使其负载能力和开关速度都比普通的方式有很大的提高。推挽输出的低电平为 0 伏,高电平为 3.3 伏,具体参考图推挽等效电路 ,它是推挽输出模式时的等效电路。

        而在开漏输出模式时,上方的 P-MOS 管完全不工作。如果我们控制输出为 0,低电平,则 P-MOS 管关闭,N-MOS 管导通,使输出接地,若控制输出为 1 (它无法直接输出高电平) 时,则 P-MOS 管和 N-MOS 管都关闭,所以引脚既不输出高电平,也不输出低电平,为高阻态。为正常使用时必须外部接上拉电阻,参考图开漏电路 中等效电路。它具有线与”特性,也就是说,若有很多个开漏模式引脚连接到一起时,只有当所有引脚都输出高阻态,才由上拉电阻提供高电平此高电平的电压为外部上拉电阻所接的电源的电压。若其中一个引脚为低电平,那线路就相当于短路接地,使得整条线路都为低电平,0 伏。 

        推挽输出模式一般应用在输出电平为 0 和 3.3 伏而且需要高速切换开关状态的场合。STM32的应用中,除了必须用开漏模式的场合,我们都习惯使用推挽输出模式。 

        开漏输出一般应用在 I2C、SMBUS 通讯等需要“线与”功能的总线电路中。除此之外,还用在电平不匹配的场合,如需要输出 5 伏的高电平,就可以在外部接一个上拉电阻,上拉电源为 5伏,
并且把 GPIO 设置为开漏模式,当输出高阻态时,由上拉电阻和电源向外输出 5 伏的电平,具体
见图 STM32_IO 对外输出 5V 电平。

        也就是说,如果你需要让 STM32单片机 IO 口输出一个 5V 的信号时,可以把这个 IO 口设置为开漏输出,并且在该 IO 口上外接上拉电阻和 5V 电源,那么通过控制该 IO 口的输出状态,就可以输出 5V 和 0V。

        3)输出数据寄存器

        前面提到的双 MOS 管结构电路的输入信号,是由 GPIO “输出数据寄存器 GPIOx_ODR”提供的,因此我们通过修改输出数据寄存器的值就可以修改 GPIO 引脚的输出电平。而 “置位/复位寄存器 GPIOx_BSRR” 可以通过修改输出数据寄存器的值从而影响电路的输出。

        3.1)ODR 端口输出数据寄存器

        ODR 是一个端口输出数据寄存器,也只用了低 16 位。该寄存器为可读写,从该寄存器读出来的数据可以用于判断当前 IO 口的输出状态。而向该寄存器写数据,则可以控制某个 IO 口的输出电平。该寄存器的各位描述如图所示:

        在固件库中设置 ODR 寄存器的值来控制 IO 口的输出状态是通过函数 GPIO_Write 来实现的:

void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal);

        该函数一般用来往一次性一个 GPIO 的多个端口设值。比如:

//0000 0000 0000 0001  对应 PA0-PA15  16个端口,最低位PA0
GPIO_Write(GPIOA,0X0001);//此时 PA0 输出高电平//0000 0000 0000 0011  对应 PA0-PA15
GPIO_Write(GPIOA,0X0003);//此时 PA0 PA1 输出高电平

        3.2)BSRR 端口位设置/清除寄存器 

        BSRR 寄存器是端口位设置/清除寄存器。该寄存器和 ODR 寄存器具有类似的作用,都可以用来设置 GPIO 端口的输出位是 1 还是 0。低16位用来给端口输出高电平,高16位用来给端口输出低电平,下面我们看看该寄存器的描述如下图:

        该寄存器通过举例子可以很清楚了解它的使用方法。例如你要设置 GPIOA 的第 1 个端口值为 1,那么你只需要往寄存器 BSRR 的低 16 位对应位写 1 即可:

GPIOA->BSRR=1<<1;

         如果你要设置 GPIOA 的第 1 个端口值为 0,你只需要往寄存器高 16 位对应为写 1 即可:

GPIOA->BSRR = 1<<(16+1)

         该寄存器往相应位写 0 是无影响的,所以我们要设置某些位,我们不用管其他位的值。

        BRR 寄存器是端口位清除寄存器。该寄存器的作用跟 BSRR 的高 16 位雷同,这里就不做详细讲解。在 STM32 固件库中,通过 BSRR 和 BRR 寄存器设置 GPIO 端口输出是通过函数
GPIO_SetBits() 和函数 GPIO_ResetBits() 来完成的。

void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);
void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin);

        在多数情况下,我们都是采用这两个函数来设置 GPIO 端口的输入和输出状态。比如我们要设置 GPIOB.5 输出 1,那么方法为:

GPIO_SetBits(GPIOB, GPIO_Pin_5);

 反之如果要设置 GPIOB.5 输出位 0,方法为:

GPIO_ResetBits (GPIOB, GPIO_Pin_5);

GPIO 相关的函数我们先讲解到这里。虽然 IO 操作步骤很简单,这里我们还是做个概括性
的总结,操作步骤为:
        1) 使能 IO 口时钟。调用函数为 RCC_APB2PeriphClockCmd()。
        2) 初始化 IO 参数。调用函数 GPIO_Init();
        3) 操作 IO。操作 IO 的方法就是上面我们讲解的方法。 

        4)复用功能输出

        “复用功能输出”中的“复用”是指 STM32 的其它片上外设对 GPIO 引脚进行控制,此时 GPIO 引脚用作该外设功能的一部分,算是第二用途。从其它外设引出来的“复用功能输出信号”与 GPIO
本身的数据据寄存器都连接到双 MOS 管结构的输入中,通过图中的梯形结构作为开关切换选择。
        例如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯发送引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,由串口外设控制该引脚,发送数据。

// GPIOB 16 个 IO 全部输出 0XFF
GPIOB->ODR = 0XFF;

        5)输入数据寄存器

        看 GPIO 结构框图的上半部分,GPIO 引脚经过内部的上、下拉电阻,可以配置成上/下拉输入,然后再连接到施密特触发器,信号经过触发器后,模拟信号转化为 0、1 的数字信号,然后存储在 “输入数据寄存器 GPIOx_IDR”中,通过读取该寄存器就可以了解 GPIO 引脚的电平状态。

// 读取 GPIOB 端口的 16 位数据值
uint16_t temp;
temp = GPIOB->IDR;

        IDR 是一个端口输入数据寄存器,只用了低 16 位。该寄存器为只读寄存器,并且只能以
16 位的形式读出。该寄存器各位的描述如图所示:

        要想知道某个 IO 口的电平状态,你只要读这个寄存器,再看某个位的状态就可以了。使用起来是比较简单的。在固件库中操作 IDR 寄存器读取 IO 端口数据是通过 GPIO_ReadInputDataBit函数实现的: 

uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

         比如我要读 GPIOA.5 的电平状态,那么方法是:

GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5);

         返回值是 1(Bit_SET)或者 0(Bit_RESET)。

        6)复用功能输入

        与 “复用功能输出” 模式类似,在 “复用功能输入模式” 时,GPIO 引脚的信号传输到 STM32 其它片上外设,由该外设读取引脚状态。
        同样,如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯接收引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,使 USART 可以通过该通讯引脚的接收远端数据。

        7)模拟输入输出

        当 GPIO 引脚用于 ADC 采集电压的输入通道时,用作 “模拟输入” 功能,此时信号是不经过施密特触发器的,因为经过施密特触发器后信号只有 0、1 两种状态,所以 ADC 外设要采集到原始的模拟信号,信号源输入必须在施密特触发器之前。类似地,当 GPIO 引脚用于 DAC 作为模拟电压输出通道时,此时作为“模拟输出” 功能,DAC 的模拟信号输出就不经过双 MOS 管结构,模拟信号直接输出到引脚。

4. GPIO 工作模式

         在固件库中,GPIO 总共有 8 种细分的工作模式,4种输入:模拟输入、浮空输入、下拉输入、上拉输入;4种输出:开漏输出、推挽输出、复用开漏输出、复用推挽输出。稍加整理可以大致归类为以下三类:

        1)输入模式(模拟/浮空/上拉/下拉)

        在输入模式时,施密特触发器打开,输出被禁止,可通过输入数据寄存器 GPIOx_IDR 读取 I/O 状态。其中输入模式,可设置为上拉、下拉、浮空和模拟输入四种。

  • 上拉和下拉输入很好理解,默认的电平由上拉或者下拉决定。
  • 浮空输入的电平是不确定的,完全由外部的输入决定,一般接按键的时候用的是这个模式。
  • 模拟输入则用于 ADC 采集。

        2)输出模式(推挽/开漏)

        在输出模式中,推挽模式时双 MOS 管以轮流方式工作,输出数据寄存器 GPIOx_ODR 可控制 I/O输出高低电平。开漏模式时,只有 N-MOS 管工作,输出数据寄存器可控制 I/O 输出高阻态或低电平。输出速度可配置,有 2MHz 10MHz 50MHz 的选项。此处的输出速度即 I/O 支持的高低电平状态最高切换频率,支持的频率越高,功耗越大,如果功耗要求不严格,把速度设置成最大即可。在输出模式时施密特触发器是打开的,即输入可用,通过输入数据寄存器 GPIOx_IDR 可读取 I/O的实际状态。

        3)复用功能(推挽/开漏)

        复用功能模式中,输出使能,输出速度可配置,可工作在开漏及推挽模式,但是输出信号源于其它外设,输出数据寄存器 GPIOx_ODR 无效;输入可用,通过输入数据寄存器可获取 I/O 实际状态,但一般直接用外设的寄存器来获取该数据信号。
        通过对 GPIO 寄存器写入不同的参数,就可以改变 GPIO 的工作模式,再强调一下,要了解具体寄存器时一定要查阅《STM32F10X-中文参考手册》中对应外设的寄存器说明。在 GPIO 外设中,控制端口高低控制寄存器 CRH 和 CRL 可以配置每个 GPIO 的工作模式和工作的速度,每 4个位控制一个 IO,CRH 控制端口的高八位,CRL 控制端口的低 8 位,具体的看 CRH 和 CRL 的寄存器描述。

5. 实验—— 操作GPIO 点亮 LED 灯

5.1 硬件连接图

        从上图种可以看到,三个 LED 灯(发光二极管),阳极接 3.3 V,阴极接了一个限流电阻,再接到单片机的 IO 口上;这里的 LED 灯 一定要接限流电阻,否则会烧坏 LED 灯;至于 这个限流电阻的阻值如何计算,根据 你所买的 LED 灯的功率参数来定;比如点亮 红色 0805 LED ,一般参数是 0805 红色 LED灯,导通压降为 2V ,电流为 20mA,R = (3.3-2)/0.02 =  65 Ω;当然,这是我举的例子,计算方法,至于你手头的 LED灯,多大的功率参数,自己计算,有时候,并不是根据他们给的官方参数,可以自己试试,这个 红色 0805 LED灯,10mA 也可以点亮。

5.2 程序代码

led.h

#ifndef __LED_H
#define __LED_H	 
#include "sys.h"//宏定义位操作头文件#define LED0_R PBout(5)// PB5
#define LED1_G PBout(6)// PB6	
#define LED2_B PBout(7)// PB7	void led_init(void);//初始化#endif

led.c

#include "led.h"//初始化PB5和PE5为输出口.并使能这两个口的时钟
//LED IO初始化
void led_init(void)
{GPIO_InitTypeDef  GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);   //使能PB端口时钟GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5;               //LED0-->PB.5 端口配置GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;        //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;       //IO口速度为50MHzGPIO_Init(GPIOB, &GPIO_InitStructure);                  //根据设定参数初始化GPIOB.5GPIO_SetBits(GPIOB, GPIO_Pin_5);                        //PB.5 输出高GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;               //LED1-->PB.6 端口配置, 推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure);                  //推挽输出 ,IO口速度为50MHzGPIO_SetBits(GPIOB, GPIO_Pin_6);                        //PB.6 输出高GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;               //LED2-->PB.7 端口配置, 推挽输出GPIO_Init(GPIOB, &GPIO_InitStructure);                  //推挽输出 ,IO口速度为50MHzGPIO_SetBits(GPIOB, GPIO_Pin_7);                        //PB.7 输出高
}

main.c

/* led 灯测试实验 */
void main(void)
{led_init();      //初始化LEDdelay_init();    //初始化延时函数while (1){LED0_R = 0;delay_ms(500);LED0_R = 1;LED1_G = 0;delay_ms(500);LED1_G = 1;LED2_B = 0;delay_ms(500);LED2_B = 1;}return 0;
}

相关文章:

(四)STM32 操作 GPIO 点亮 LED灯 / GPIO工作模式

目录 1. STM32 工程模板中的工程目录介绍 2. GPIO 简介 3. GPIO 框图剖析 1&#xff09;保护二极管及上、下拉电阻 2&#xff09; P-MOS 管和 N-MOS 管 3&#xff09;输出数据寄存器 3.1&#xff09;ODR 端口输出数据寄存器 3.2&#xff09;BSRR 端口位设置/清除寄存器 4&a…...

你知道跨站脚本攻击吗?一篇带你了解什么叫做XSS

1.XSS简介 &#xff08;1&#xff09;XSS简介 XSS作为OWASP TOP 10之一。 XSS中文叫做跨站脚本攻击&#xff08;Cross-site scripting&#xff09;&#xff0c;本名应该缩写为CSS&#xff0c;但是由于CSS&#xff08;Cascading Style Sheets&#xff0c;层叠样式脚本&#x…...

JVM入门

JVM概述 JVM位置 JVM体系结构 注意&#xff1a;栈中一定不存在垃圾&#xff0c;栈中数据用完一个弹出一个&#xff0c;总结来说&#xff0c;栈区、本地方法栈、程序计数器这三块必定不存在垃圾。JVM调优主要是针对方法区、堆&#xff08;99%&#xff09;进行调优。 常用的第三…...

Cmake基础(5)

这篇文章主要描述如何使用cmake构建一个库工程 文章目录 add_libraryinstall 库工程的代码&#xff1a;头文件和源文件 #ifndef ADD_H #define ADD_H#ifdef _WIN32 #ifdef MYMATH_EXPORTS #define MYMATH_API __declspec(dllexport) #else #define MYMATH_API __declspec(dll…...

Rabbitmq 死信取消超时订单

本文使用的版本 otp_win64_25.0rabbitmq-server-3.11.26rabbitmq插件 rabbitmq_delayed_message_exchange-3.11.1 pom.xml文件 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> …...

C语言—每日选择题—Day55

指针相关博客 打响指针的第一枪&#xff1a;指针家族-CSDN博客 深入理解&#xff1a;指针变量的解引用 与 加法运算-CSDN博客 第一题 1. 若有如下定义&#xff0c;则 p1&m&#xff1b;p2p1&#xff1b; 是正确赋值语句.说法是否正确&#xff1f; int *p1; int *p2; int m …...

软件测试岗位的简历怎么写?项目怎么包装

已经帮大家打包好了包装好的简历模板&#xff0c;大家可以直接进行套用&#xff0c;详情请望下看 自动化测试相关教程推荐&#xff1a; 2023最新自动化测试自学教程新手小白26天入门最详细教程,目前已有300多人通过学习这套教程入职大厂&#xff01;&#xff01;_哔哩哔哩_bili…...

服务器解析漏洞是什么?攻击检测及修复

服务器解析漏洞&#xff08;Server-side Include Vulnerability&#xff0c;SSI漏洞&#xff09;是一种安全漏洞&#xff0c;通常出现在支持服务器端包含&#xff08;SSI&#xff09;功能的Web服务器上。SSI是一种在Web页面中嵌入动态内容的技术&#xff0c;允许开发人员将外部…...

HTML---CSS美化网页元素

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.div 标签&#xff1a; <div>是HTML中的一个常用标签&#xff0c;用于定义HTML文档中的一个区块&#xff08;或一个容器&#xff09;。它可以包含其他HTML元素&#xff0c;如文本、图像…...

【Docker】基础篇

文章目录 Docker为什么出现容器和虚拟机关于虚拟机关于Docker二者区别&#xff1a; Docker的基本组成相关概念-镜像&#xff0c;容器&#xff0c;仓库安装Docker卸载docker阿里云镜像加速docker run的原理**为什么容器比虚拟机快**Docker的常用命令1.帮助命令2.镜像相关命令3.容…...

Potplayer播放器远程访问群晖WebDav本地资源【内网穿透】

文章目录 本教程解决的问题是&#xff1a;按照本教程方法操作后&#xff0c;达到的效果是&#xff1a;1 使用环境要求&#xff1a;2 配置webdav3 测试局域网使用potplayer访问webdav3 内网穿透&#xff0c;映射至公网4 使用固定地址在potplayer访问webdav 国内流媒体平台的内容…...

【神经网络】imshow展示图片报错

文章目录 代码示例报错信息报错原因解决方法其他问题 代码示例 plt.imshow(np.squeeze(images[0]))报错信息 Invalid shape (3, 60, 90) for image data报错原因 格式错误&#xff0c;输入具有RGB值的图像&#xff0c;输入三维数组参数的格式应该是&#xff08;高度&#xf…...

【C++】对象特性:无参有参构造函数,拷贝构造函数,析构函数

目录 对象的初始化和清理1.1 构造函数和析构函数1.2 构造函数的分类及调用1.3 拷贝构造函数调用时机1.4 构造函数调用规则1.5 深拷贝与浅拷贝 对象的初始化和清理 生活中我们买的电子产品都基本会有出厂设置&#xff0c;在某一天我们不用时候也会删除一些自己信息数据保证安全。…...

【算法与数据结构】1005、LeetCode K 次取反后最大化的数组和

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;本题允许某个下标的数字多次翻转&#xff0c;因此思路比较简单。首先&#xff0c;我们要求最大和&…...

作业--day34

使用select完成TCP并发服务器和客户端 server.c #include <myhead.h>#define PORT 8888 #define IP "192.168.125.137"int main(int argc, const char *argv[]) {int sfd socket(AF_INET, SOCK_STREAM, 0);if(sfd -1){perror("socket error");re…...

车辆违规开启远光灯检测系统:融合YOLO-MS改进YOLOv8

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着社会的不断发展和交通工具的普及&#xff0c;车辆违规行为成为了一个严重的问题。其中&#xff0c;车辆违规开启远光灯是一种常见的违规行为&#xff0c;给其…...

爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>

前言: 收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!" -----针对这位粉丝留言,我只想说:你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现…...

【Unity】运行时创建曲线(贝塞尔的运用)

[Unity]运行时创建线&#xff08;贝塞尔的运用&#xff09; 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点&#xff0c;三角面&#xff0c…...

基于DSP的IIR数字滤波器(论文+源码)

1.系统设计 在本次基于DSP的IIR数字低通滤波计中&#xff0c;拟以TMS320F28335来作为系统的主控制器&#xff0c;通过ADC0832模数转换芯片来对输入信号进行采集&#xff1b;通过TLC5615来将低通滤波后的信号进行输出&#xff1b;同时结合MATLAB仿真软件&#xff0c;对设计的II…...

Django(一)

1.web框架底层 1.1 网络通信 注意&#xff1a;局域网 个人一般写程序&#xff0c;想要让别人访问&#xff1a;阿里云、腾讯云。 去云平台租服务器&#xff08;含公网IP&#xff09;程序放在云服务器 先以局域网为例 我的电脑【服务端】 import socket# 1.监听本机的IP和…...

微信小程序如何利用createIntersectionObserver实现图片懒加载

微信小程序如何利用createIntersectionObserver实现图片懒加载 节点布局相交状态 API 可用于监听两个或多个组件节点在布局位置上的相交状态。这一组API常常可以用于推断某些节点是否可以被用户看见、有多大比例可以被用户看见。 节点布局相交状态 API中有一个 wx.createInter…...

七:爬虫-数据解析之正则表达式

七&#xff1a;正则表达式概述 正则表达式&#xff0c;又称规则表达式,&#xff08;Regular Expression&#xff0c;在代码中常简写为regex、regexp或RE&#xff09;&#xff0c;是一种文本模式&#xff0c;包括普通字符&#xff08;例如&#xff0c;a 到 z 之间的字母&#xf…...

云原生之深入解析亿级流量架构之服务限流思路与方法

一、限流思路 ① 熔断 系统在设计之初就把熔断措施考虑进去&#xff0c;当系统出现问题时&#xff0c;如果短时间内无法修复&#xff0c;系统要自动做出判断&#xff0c;开启熔断开关&#xff0c;拒绝流量访问&#xff0c;避免大流量对后端的过载请求。系统也应该能够动态监测…...

【Python炫酷系列】祝考研的友友们金榜题名吖(完整代码)

文章目录 环境需求完整代码详细分析系列文章环境需求 python3.11.4及以上版本PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.…...

KL散度、CrossEntropy详解

文章目录 0. 概述1. 信息量1.1 定义1.2 性质1.3 例子2. 熵 Entropy2.1 定义2.2 公式2.3 例子3. 交叉熵 Cross Entropy3.1 定义3.2 公式3.3 例子4. KL 散度(相对熵)4.1 公式...

【算法】红黑树

一、红黑树介绍 红黑树是一种自平衡二叉查找树&#xff0c;是在计算机科学中用到的一种数据结构&#xff0c;典型的用途是实现关联数组。 红黑树是在1972年由Rudolf Bayer发明的&#xff0c;当时被称为平衡二叉B树&#xff08;symmetric binary B-trees&#xff09;。后来&am…...

2023楚慧杯 WEB方向 部分:(

1、eaaeval 查看源码能看见账号&#xff1a;username169&#xff0c;密码&#xff1a;password196提交这个用户密码可以跳转到页面/dhwiaoubfeuobgeobg.php 通过dirsearch目录爆破可以得到www.zip <?php class Flag{public $a;public $b;public function __construct(){…...

STM32 CAN多节点组网项目实操 挖坑与填坑记录2

系列文章&#xff0c;持续探索CAN多节点通讯&#xff0c; 上一篇文章链接&#xff1a; STM32 CAN多节点组网项目实操 挖坑与填坑记录-CSDN博客文章浏览阅读120次。CAN线性组网项目开发过程中遇到的数据丢包问题&#xff0c;并尝试解决的记录和推测分析。开发了一个多节点线性…...

Flink 数据类型 TypeInformation信息

Flink流应用程序处理的是以数据对象表示的事件流。所以在Flink内部&#xff0c;我么需要能够处理这些对象。它们需要被序列化和反序列化&#xff0c;以便通过网络传送它们&#xff1b;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点&#xff0c;Flink需要明确知…...

基于python的leetcode算法介绍之递归

文章目录 零 算法介绍一 简单示例 辗转相除法Leetcode例题与思路[509. 斐波那契数](https://leetcode.cn/problems/fibonacci-number/)解题思路&#xff1a;题解&#xff1a; [206. 反转链表](https://leetcode.cn/problems/reverse-linked-list/)解题思路&#xff1a;题解&…...

专门做国外家具书籍的网站/百度网站排名优化

育软件、程序设计软件、网络软件、工具软件。(三)Word文字处理【教学目的与要求】1、通过本部分的学习&#xff0c;了解Word窗口的组成部分&#xff1b;了解在Word中插入与编辑公式的方法&#xff1b;2、理解Word文字排版中的常见概念&#xff1b;理解word中表格的行、列、单元…...

南昌做购物网站的公司/下载百度极速版免费安装

记录了初步解题思路 以及本地实现代码&#xff1b;并不一定为最优 也希望大家能一起探讨 一起进步 目录10/24 915. 分割数组10/25 934. 最短的桥10/26 862. 和至少为 K 的最短子数组10/27 1822. 数组元素积的符号10/28 907. 子数组的最小值之和10/29 1773. 统计匹配检索规则的物…...

免费微信h5页面制作/北京seo公司司

前言介绍 在Java中,提供了一些关于使用IO的API,可以供开发者来读写外部数据和文件,我们称这些API为Java IO。IO是Java中比较重要知识点,且比较难学习的知识点。并且随着Java的发展为提供更好的数据传输性能,目前有三种IO共存;分别是BIO、NIO和AIO。 Java BIO[Blocking …...

什么网站有做册子版/学生没钱怎么开网店

创业公司怎样才能被大公司收购&#xff1f;对于一家创业公司来说&#xff0c;虽然自己坚持下去也是个不错的选择&#xff0c;不过要是被像苹果或Google这样最具价值的公司收购&#xff0c;那将是一件无比激动人心的事&#xff0c;那怎么做才能受到它们的青睐&#xff0c;吸引它…...

涞水住房和城乡建设委员会网站/seo网站推广批发

前言&#xff1a;要秋招了&#xff0c;复习一下应对秋招&#xff0c;纠结该先看啥&#xff0c;最后决定先学习《Java高并发编程详解》&#xff0c;此博客为看书所写的笔记&#xff0c;因为是笔记&#xff0c;所以会只记比较重要的东西&#xff0c;不适合初学者。 参考&#xf…...

代做计算机毕业设计网站/网站名查询网址

昨天去SJTU参加Google暑期实习海选。卷子发下来一看全是数据结构、算法&#xff0c;虽然这两个我都考过80几还可以。。但都忘得差不多了。 前面选择题大都是读读程序&#xff0c;只有算复杂度的问题我比较郁闷&#xff0c;因为当年就没有认真算过复杂度。。考试时候填的那些O(L…...