当前位置: 首页 > news >正文

爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>

前言:

收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!"

-----针对这位粉丝留言,我只想说:'你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现在给你讲的.

正文

首先,你要清楚,当在Scrapy框架中,pipelines是顺序执行的,对item的处理通常是同步进行。

这时候,你要分析2件事:

1.我的数据要不要清洗

2.我的数据准备怎么存储

分开讲:

1.我的数据要不要清洗:

如果需要清洗,item的数据里比较多,我建议你转一下pd.dataframe;这样,会比正常运算要快得多;然后,给你3条建议:

  1. 避免在循环内使用 df.apply():--->    apply() 是行或列级别的操作函数,效率相对较低。如果可以,尝试用更高效的Pandas内建函数代替,比如使用逻辑运算与 numpy 的向量化操作。
  2. 对于字符串处理,如果数据量很大,应当尽量使用向量化方法,例如 .str 方法或其他Pandas字符串操作代替 lambda 函数。
  3. 当创建新的列时,用条件表达式替代 .apply(lambda) 可以获得更好的性能,条件表达式在Pandas中是向量化的。
如果pandas处理之后,不满足:
分离繁重操作:
如果有些操作很繁重,可以将它们移动到Scrapy的middleware或者扩展来进行,这样可能有助于提高item pipeline的处理速度。这时候,你就可以通过外部自己写一个多线程/多进程来处理你的数据工作!
当然,处理item的数据清理工作,我建议你用:
ItemAdapter
什么是ItemAdapter?

-它是一个包装类,允许我们以一致的方式处理不同种类的数据结构,例如dict、scrapy.Item以及自定义的数据类。无论内部的数据存储格式如何,ItemAdapter都能让我们同等的获取和设置Item中的字段值。


ItemAdapter的使用场景

ItemAdapter特别适用于编写更通用的Pipeline代码。无论传入的Item是Scrapy的Item实例还是普通的dict,甚至是自定义的类实例,你都可以使用相同的方法来处理它们。这样的设计大大提升了代码的复用性和可维护性。

案例:
import scrapy
from itemadapter import ItemAdapter
import pandas as pd
import numpyclass JihaiPipeline:def open_spider(self, spider):# 初始化工作,例如连接数据库passdef close_spider(self, spider):# 清理工作,例如关闭数据库连接passdef process_item(self, item, spider):# 使用ItemAdapter包装itemadapter = ItemAdapter(item)# 进行数据处理...# 例如,假设我们需要给所有Item添加一个新字段adapter['new_field'] = '丢一个新的字段进去'# 处理完后,返回itemreturn item

在上面的代码中,我们没有直接操作原始的item对象,而是将其通过ItemAdapter(item)包装起来。然后就可以像操作字典一样,通过adapter['new_field']来设置新字段。在管道中修改完数据后,可以直接将Item传递到下一个管道。

ItemAdapter中的向量化操作

对于爬虫项目,可能需要对数据进行更复杂的清洗和转换操作。在Pandas的帮助下,我们可以执行向量化的数据处理工作,这是一种高效处理数据的方式。通过Pandas,利用DataFrame进行复杂的数据清洗和分析变得相当简便

案例:
class JihaiPipeline:# ...之前的方法...def process_item(self, item, spider):adapter = ItemAdapter(item)# 假设我们的item有一个成绩的列表需要处理grades = adapter.get('grades', [])# 使用Pandas创建DataFramedf = pd.DataFrame(grades)# 执行一些复杂的计算操作,例如计算平均分adapter['average_grade'] = df['score'].mean()# 返回处理后的itemreturn item

在这个例子中,我们先获取了成绩列表,然后使用这个列表创建了一个Pandas DataFrame。之后我们就可以利用DataFrame提供的方法进行各种操作,比如这里计算了一个平均分成绩,然后将其添加到了item中。

小总结:

ItemAdapter提供了一个透明的方式来处理项,帮助你更简单地编写与项结构无关的代码。与Pandas结合使用,它也使得在Scrapy中进行复杂数据处理成为可能。记住,一致性、可读性和可维护性是编写高质量爬虫代码时的关键点。


2.我的数据准备怎么存储?

 

如果你的数据比较单一,你直接存(就跟你老师教你的那样!) 如果你的数据已经到达了你的瓶颈,你最好做个分离;然后看我之前的文章,例如:存入sql--->你首先要想到的就是异步!

在Scrapy中,最佳实践通常是将数据处理(清洗、转换等)与数据存储(写入数据库等)分离。这为你的数据处理流水线提供了更好的组织结构和可扩展性。每个Pipeline应该只负责一个操作或一组相关操作。这样做的好处是:

1. 职责分离:这使得每个pipeline的职责更清晰。如果以后需要更改存储逻辑,只需要更改保存到SQL的pipeline,而不需要触及数据处理的pipeline。
2. 模块化:如果在将来需要将数据存储到不同的后端(例如不同的数据库,或者文件系统等),你可以简单地添加一个新的pipeline来处理这种情况,而不是更改现有代码。
3. 可维护性:代码维护更简单,因为数据清洗和存储是分开的,错误更容易追踪,代码更容易调试。
4. 可测试性:独立的pipeline更容易进行单元测试。

既然已经完成了数据处理,并且将结果整理成了待存储的格式,接下来的逻辑步骤是将这些数据保存到SQL数据库。创建一个新的Pipeline类专门用于与SQL数据库的交互,这样,你的 `XXXPipeline` 负责处理数据,并将处理后的数据传递给稍后在settings.py文件中定义优先级更低的SQL存储pipeline。

下面是创建一个专门用于存储数据到SQL数据库的pipeline的简单例子(要异步,往前看我文章有介绍):

# sql_pipeline.pyimport scrapy
from scrapy import Item
from itemadapter import ItemAdapterclass SQLStorePipeline:def open_spider(self, spider):# 这里设置数据库连接self.connection = create_connection_to_database()def close_spider(self, spider):# 关闭数据库连接self.connection.close()def process_item(self, item, spider):# 提取ItemAdapteradapter = ItemAdapter(item)# 保存到数据库的逻辑save_to_database(self.connection, adapter.as_dict())return item  # 注意,返回item是为了允许多个pipelinedef create_connection_to_database():# 创建数据库链接逻辑passdef save_to_database(connection, item_data):# 将item数据保存到数据库的逻辑pass

在`settings.py`文件中,您需要确保新的`SQLStorePipeline`在`XXXPipeline`之后执行。这可以通过为它们分配不同的`ITEM_PIPELINES`值来实现:

# settings.pyITEM_PIPELINES = {'myproject.pipelines.XXXPipeline': 300,  #处理数据清理的'myproject.pipelines.SQLStorePipeline': 800,   #存储的
}

这样,每个item首先通过`JihaiPipeline`进行处理,然后再通过`SQLStorePipeline`进行存储。

通过这种方式,您既保持了pipeline的职责分割,又为后续的维护和可能的扩展性打下了良好的基础。如果有多个数据存储或处理需求,遵循这种模式是非常有好处的。

总结:

你就记住,如果你的item数据量比较大,一定要分离! 分完了,很多都能处理了! 另外,你记得itemAdapter的用法~ 他应该算是一个引子,透过他~你写着写着就会冒出很多怪招出来~ 然后,再不行,你就进行分布式! 反正你的业务已经模块化了,拿一个机器专门清理,拿一个机器专门存储~或者,丢到中间件,甩到外部去做多线程处理!这样,在爬虫过程中,对数据的清理和存储的工作量,就能被划分掉,不就轻了么...   

请你看到这文章,给我点个赞!!

(让我知道你来了)

相关文章:

爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>

前言: 收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!" -----针对这位粉丝留言,我只想说:你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现…...

【Unity】运行时创建曲线(贝塞尔的运用)

[Unity]运行时创建线(贝塞尔的运用) 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点,三角面&#xff0c…...

基于DSP的IIR数字滤波器(论文+源码)

1.系统设计 在本次基于DSP的IIR数字低通滤波计中,拟以TMS320F28335来作为系统的主控制器,通过ADC0832模数转换芯片来对输入信号进行采集;通过TLC5615来将低通滤波后的信号进行输出;同时结合MATLAB仿真软件,对设计的II…...

Django(一)

1.web框架底层 1.1 网络通信 注意:局域网 个人一般写程序,想要让别人访问:阿里云、腾讯云。 去云平台租服务器(含公网IP)程序放在云服务器 先以局域网为例 我的电脑【服务端】 import socket# 1.监听本机的IP和…...

微信小程序如何利用createIntersectionObserver实现图片懒加载

微信小程序如何利用createIntersectionObserver实现图片懒加载 节点布局相交状态 API 可用于监听两个或多个组件节点在布局位置上的相交状态。这一组API常常可以用于推断某些节点是否可以被用户看见、有多大比例可以被用户看见。 节点布局相交状态 API中有一个 wx.createInter…...

七:爬虫-数据解析之正则表达式

七:正则表达式概述 正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex、regexp或RE),是一种文本模式,包括普通字符(例如,a 到 z 之间的字母&#xf…...

云原生之深入解析亿级流量架构之服务限流思路与方法

一、限流思路 ① 熔断 系统在设计之初就把熔断措施考虑进去,当系统出现问题时,如果短时间内无法修复,系统要自动做出判断,开启熔断开关,拒绝流量访问,避免大流量对后端的过载请求。系统也应该能够动态监测…...

【Python炫酷系列】祝考研的友友们金榜题名吖(完整代码)

文章目录 环境需求完整代码详细分析系列文章环境需求 python3.11.4及以上版本PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.…...

KL散度、CrossEntropy详解

文章目录 0. 概述1. 信息量1.1 定义1.2 性质1.3 例子2. 熵 Entropy2.1 定义2.2 公式2.3 例子3. 交叉熵 Cross Entropy3.1 定义3.2 公式3.3 例子4. KL 散度(相对熵)4.1 公式...

【算法】红黑树

一、红黑树介绍 红黑树是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。 红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来&am…...

2023楚慧杯 WEB方向 部分:(

1、eaaeval 查看源码能看见账号&#xff1a;username169&#xff0c;密码&#xff1a;password196提交这个用户密码可以跳转到页面/dhwiaoubfeuobgeobg.php 通过dirsearch目录爆破可以得到www.zip <?php class Flag{public $a;public $b;public function __construct(){…...

STM32 CAN多节点组网项目实操 挖坑与填坑记录2

系列文章&#xff0c;持续探索CAN多节点通讯&#xff0c; 上一篇文章链接&#xff1a; STM32 CAN多节点组网项目实操 挖坑与填坑记录-CSDN博客文章浏览阅读120次。CAN线性组网项目开发过程中遇到的数据丢包问题&#xff0c;并尝试解决的记录和推测分析。开发了一个多节点线性…...

Flink 数据类型 TypeInformation信息

Flink流应用程序处理的是以数据对象表示的事件流。所以在Flink内部&#xff0c;我么需要能够处理这些对象。它们需要被序列化和反序列化&#xff0c;以便通过网络传送它们&#xff1b;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点&#xff0c;Flink需要明确知…...

基于python的leetcode算法介绍之递归

文章目录 零 算法介绍一 简单示例 辗转相除法Leetcode例题与思路[509. 斐波那契数](https://leetcode.cn/problems/fibonacci-number/)解题思路&#xff1a;题解&#xff1a; [206. 反转链表](https://leetcode.cn/problems/reverse-linked-list/)解题思路&#xff1a;题解&…...

2023年度佳作:AIGC、AGI、GhatGPT、人工智能大语言模型的崛起与挑战

目录 前言 01 《ChatGPT 驱动软件开发》 内容简介 02 《ChatGPT原理与实战》 内容简介 03 《神经网络与深度学习》 04 《AIGC重塑教育》 内容简介 05 《通用人工智能》 目  录 前言 2023年是人工智能大语言模型大爆发的一年&#xff0c;一些概念和英文缩写也在这一…...

Axure的交互以及情形的介绍

一. 交互 1.1 交互概述 通俗来讲就是&#xff0c;谁用了什么方法做了什么事情&#xff0c;主体"谁"对应的就是axure中的元件&#xff0c;"什么方法"对应的就是交互事件&#xff0c;比如单击事件、双击事件&#xff0c;"什么事情"对应的就是交互…...

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用

【MATLAB第84期】基于MATLAB的波形叠加极限学习机SW-ELM代理模型的sobol全局敏感性分析法应用 前言 跟往期sobol区别&#xff1a; 1.sobol计算依赖于验证集样本&#xff0c;无需定义变量上下限。 2.SW-ELM自带激活函数&#xff0c;计算具有phi&#xff08;x&#xff09;e^x激…...

米游社区表情包整合网站源码

源码介绍 米游社表情包整合网站源码&#xff0c;来自Github大佬的项目&#xff0c;包含米游兔123枚&#xff0c;米游社 玩家12枚&#xff0c;崩坏 星穹铁道112枚&#xff0c;绝区零218枚&#xff0c;NAP32枚&#xff0c;崩坏RPG62枚&#xff0c;崩坏3-1282枚&#xff0c;原神 …...

easyexcel调用公共导出方法导出数据

easyexcel备忘 Slf4j public class ConditionDownloadUtil {//扫描在xboot 包下所有IService 接口的子类, 每次启动服务后, 重新扫描public final static Class[] classesExtendsIService ClassUtil.scanPackageBySuper("cn.exrick.xboot", IService.class).toArra…...

C语言插入排序算法及代码

一、原理 在待排序的数组里&#xff0c;从数组的第二个数字开始&#xff0c;通过构建有序序列&#xff0c;对于未排序数据&#xff0c;在已排序序列中从后向前扫描&#xff0c;找到相应位置并插入。 二、代码部分 #include<stdio.h> #include<stdlib.h> int ma…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

前端调试HTTP状态码

1xx&#xff08;信息类状态码&#xff09; 这类状态码表示临时响应&#xff0c;需要客户端继续处理请求。 100 Continue 服务器已收到请求的初始部分&#xff0c;客户端应继续发送剩余部分。 2xx&#xff08;成功类状态码&#xff09; 表示请求已成功被服务器接收、理解并处…...