当前位置: 首页 > news >正文

热红外图像非均匀校正方法

  
        热红外图像中的非均匀性通常指的是热像仪在感知温度时出现的空间上的灵敏度不均匀。这种非均匀性可能是由于热像仪本身的制造差异、温度梯度引起的热漂移、光学系统中的不均匀性等因素引起的。为了获得更准确、可靠的温度信息,需要进行非均匀校正。

原因:

  1. 影响测温精度: 热像仪的非均匀性会导致不同区域的相同温度显示出不同的亮度,从而影响温度测量的准确性。
  2. 提高图像质量: 非均匀校正可以消除图像中的亮度差异,使图像更加均匀,提高可视化效果。
  3. 消除热噪声: 非均匀性可能导致图像中的热噪声,通过校正可以降低热噪声的影响。

实现方式:

  1. 参考体法(Blackbody Calibration): 使用已知温度的黑体(理想的辐射体)进行校准。将黑体置于视场内,测量黑体的辐射,并根据实际测量值和理论值之间的差异来调整热像仪输出。
  2. 空间统计法: 通过分析热像仪输出图像的统计特性,如均值、方差等,来估计非均匀性的分布,并进行校正。
  3. 运动矫正法: 当热像仪相对于场景发生移动时,可以通过运动矫正来降低非均匀性。这通常需要使用陀螺仪或其他位置传感器来追踪相机的运动,并相应地调整图像。
  4. 背景补偿法: 通过测量背景辐射并进行校正,以消除非均匀性。这要求背景的温度是已知的。

        这些方法通常需要在实际应用中结合使用,以确保对非均匀性的有效校正。

        参考体法是热红外图像非均匀校正的一种方法,其基本原理是使用一个已知温度的参考体,通过测量参考体的辐射并与热像仪输出进行比较,来校正图像中的非均匀性。以下是该方法的基本原理和实现步骤:

原理:

  1. 获取参考体的温度: 选择一个已知温度的参考体,通常是一个均匀的、固定温度的表面,比如黑体。黑体的辐射特性是已知的,并且其辐射与温度成正比。

  2. 测量参考体的辐射: 使用热像仪测量参考体的辐射强度,得到图像中参考体对应的亮度值。

  3. 建立辐射与温度之间的关系: 建立一个辐射与温度之间的标定曲线或模型。这可以通过实验测定黑体在不同温度下的辐射,得到一个辐射-温度的映射关系。

  4. 校正图像: 对于图像中的每个像素,使用标定曲线或模型,将测得的亮度值转换为对应的温度值。

  5. 调整图像: 根据参考体的温度和图像中的温度值之间的差异,对图像进行调整,消除非均匀性。

实现步骤:

  1. 选择参考体: 选择一个稳定且温度已知的参考体,通常是黑体。

  2. 获取黑体温度: 使用温度传感器等设备测量黑体的实际温度。

  3. 测量参考体辐射: 利用热像仪测量黑体的辐射亮度,获得图像中参考体的亮度分布。

  4. 建立标定曲线或模型: 通过实验测定黑体在不同温度下的辐射强度,建立辐射与温度之间的标定曲线或模型。

  5. 图像校正: 对图像中的每个像素,根据标定曲线或模型,将亮度值转换为温度值。

  6. 调整图像: 通过比较图像中的温度值与参考体实际温度之间的差异,对图像进行调整,消除非均匀性。

  7. 验证校正效果: 对于一些已知温度的区域进行验证,确保校正后的图像能够准确反映实际温度。

        需要注意的是,这只是参考体法的一种基本实现方式。实际应用中,可能需要考虑更多因素,如环境温度变化、热像仪的特性等,并可能采用更复杂的数学模型来建立辐射与温度之间的关系。

相关文章:

热红外图像非均匀校正方法

热红外图像中的非均匀性通常指的是热像仪在感知温度时出现的空间上的灵敏度不均匀。这种非均匀性可能是由于热像仪本身的制造差异、温度梯度引起的热漂移、光学系统中的不均匀性等因素引起的。为了获得更准确、可靠的温度信息,需要进行非均匀校正。 原因&#xff1…...

性能压力测试--确保企业数字化业务稳健运行

随着企业的数字化转型和依赖云计算的普及,软件系统的性能已经成为企业成功运营的关键因素之一。性能压力测试作为确保系统在各种条件下都能高效运行的关键步骤,对企业的重要性不可忽视。以下是性能压力测试对企业的几个重要方面的影响和作用:…...

【Java】7种逻辑运算,你了解几种

嗨,朋友们!今天我们聊点轻松的,来看看Java中那些常用的逻辑运算。可能你在学习编程的路上已经遇到过它们,但是让我们像闲聊一样,再重新认识一下这些小伙伴们! 那个老实巴交的“与”(AND&#x…...

达梦到达梦的外部链接dblink(DM-DM DBLINK)

一. 使用场景: 部链接对象(LINK)是 DM 中的一种特殊的数据库实体对象,它记录了远程数据库的连接和路径信息,用于建立与远程数据的联系。通过多台数据库主库间的相互通讯,用户可以透明地操作远程数据库的数…...

create-react-app 打包去掉 map文件

前言: 在使用 create-react-app 创建的React应用中,默认情况下会生成带有.map文件的打包文件,这些.map文件包含了源代码和调试信息,用于开发和调试过程中进行错误跟踪。然而,在生产环境中,这些.map文件通常…...

fdisk工具详解

fdisk 是一个在Unix和类Unix系统中用于管理磁盘分区的强大工具。以下是对你列出的每个参数的解释和示例: rootswitch:/home/admin# fdisk -l /dev/mmcblk0 Disk /dev/mmcblk0: 57.63 GiB, 61865984000 bytes, 120832000 sectors Units: sectors of 1 * 512 512 by…...

【蓝桥杯选拔赛真题81】Scratch旅游相册 第十五届蓝桥杯scratch图形化编程 少儿编程创意编程选拔赛真题解析

目录 scratch旅游相册 一、题目要求 编程实现 二、案例分析 1、角色分析...

水平居中、垂直居中、水平垂直居中

1.水平居中 1.1块级元素 text-align:center; 1.2块级元素 注意:需要给标签指定宽度 margin:0 auto; 1.3绝对定位 和 自我位移 position:absolute; left:50%; transform:translateX(-50%); 注意:使用绝对定位会使元素脱离文档流 1.4flex布局 d…...

flex布局换行后出现间隙问题

问题:换行后,行间出现空白间隔,如果没有设置父容器的高度,不会出现这个问题,父容器高度会随子项增多,而变大。 .content {height: 8rem;display: flex;flex-wrap: wrap;justify-content: space-between;al…...

RPC(3):HttpClient实现RPC之GET请求

1HttpClient简介 在JDK中java.net包下提供了用户HTTP访问的基本功能,但是它缺少灵活性或许多应用所需要的功能。 HttpClient起初是Apache Jakarta Common 的子项目。用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 H…...

PHP函数里面写JQ CSS HTML的写法案例

/*** description: 返回顶部* param {*}* return {*}*/public function gotop() {global $_L, $COMCFG;$plugin $COMCFG[plugin][gotop] ?: [];$plugin array_merge(["right" > 30,"bottom" > 80,"color" > "rgba(255, 25…...

爬虫工作量由小到大的思维转变---<第十八章 Scrapy请求处理与返回策略>

前言: 今天我们来聊一聊Scrapy爬虫中的请求处理与返回策略。你有没有遇到过一个Item需要由多个请求组成的情况?如果是的话,那么对请求的处理和决定是否返回处理过的Item对象就变得格外重要。看一下Scrapy中的相关策略,实现爬虫的完美康复。 …...

【免费直播今天下午!】见微知著 唤醒视觉:机器视觉与成像应用解决方案,诚邀您的参与!

机器视觉的出现和应用突破了人眼目之所及的限制,在工业制造、生物医疗和科学研究等领域,我们利用各种视觉和光电设备,得以在“方寸之地”收获细微之处的画面。 如何找寻行业领先的视觉方案、拓宽视觉应用行业?如何拨开云雾、见微…...

智商均值回归

大家都是做技术的,应该都很聪明。 假如家族的智商极限,【min, max】 一言以蔽之,个人的智商是【min, max】中间的一个值。 同理人类的智商也有个极限值,都在这个范围内浮动。 例如,【1&#…...

ChatGPT助力Excel数据分析:让你的工作事半功倍!

文章目录 一、ChatGPT简介二、ChatGPT在Excel数据分析中的应用1. 数据清洗2. 数据处理3. 数据分析4. 数据可视化 三、如何使用ChatGPT进行Excel数据分析1. 安装ChatGPT插件2. 输入问题或命令3. 查看结果并调整参数4. 导出结果并分享四、总结与展望 《巧用ChatGPT高效搞定Excel数…...

多表插入、删除操作(批量)——后端

多表插入 场景:当添加一个菜品时,还需要记录菜品的口味信息,因此需要对菜品表(dish)和口味表(dish_flavor)同时进行插入操作。 两个表的字段: 代码思路:由DishControll…...

Java操作Word修订功能:启用、接受、拒绝、获取修订

Word的修订功能是一种在文档中进行编辑和审阅的功能。它允许多个用户对同一文档进行修改并跟踪这些修改,以便进行审查和接受或拒绝修改。修订功能通常用于团队合作、专业编辑和文件审查等场景。 本文将从以下几个方面介绍如何使用免费工具Free Spire.Doc for Java在…...

什么是数据仪表板?数据可视化仪表盘怎么制作?

在数据经济时代,分析数据是每个企业做出最佳决策的关键。但是,手动分析和解释大量数据是不可行的。数据可视化对于分析数据中存在的各种有价值信息至关重要,包括可见趋势和隐藏趋势等。仪表盘显示可视化趋势和信息,例如 KPI、趋势…...

HiveServer2

HiveServer2 基本概念介绍 1、HiveServer2基本介绍 HiveServer2 (HS2) is a server interface that enables remote clients to execute queries against Hive and retrieve the results (a more detailed intro here). The current implementation, based on Thrift RPC, i…...

YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)

一、本文介绍 本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...