当前位置: 首页 > news >正文

使用RedisCacheWriter#clean在线异步地批量扫描匹配删除缓存数据-spring-data-redis

1.背景

生产环境,某云的某个业务Redis实例,触发内存使用率,连续 3 次 平均值 >= 85 %告警。
运维同学告知,看看需要怎么优化或者升级配置?分享了其实例RDB的内存剖析链接。
通过内存剖析详情发现,存在某类未设置过期时间且无用的keys,其内存占用约3.8GB,内存占比25%

内存占比挺大,有确定的成本经济收益。
做事有动力啦!

Redis实例信息

某云Redis实例的基本信息

  • 实例规格:16G主从版
  • 版本:Redis 2.8(兼容3.0特性)

image.png

某云的Redis RDB内存剖析

  • 基本信息
    • 分析方法:使用已有备份集 (选择的备份文件:完成于)
  • 详情
  • Key内存占有情况
  • Key数量分布情况
  • Elements内存占用情况
  • Elements数量分布情况
  • Key过期时间分布 (内存)
  • Key过期时间分布 (数量)

image.png

2.目标

  • 在线异步地删除缓存数据
  • 不影响线上业务,不确定的风险可控(风险紧急预案)

3.结论先行

  • 在线清理了5GB+内存
  • 已使用内存总量,15.5GB -> 10.2GB

4.技术方案

变更三板斧:可灰度、可观测/可监控、可回滚

使用spring-data-redis提供的RedisCacheWriter#clean开源解决方案,在其基础上加入异步和并发控制。

  • 【批量策略】在线异步地批量扫描匹配删除,每批10/20个key
    • 先SCAN匹配,再批量DEL
    • SCAN(keyPattern) + DEL(allMatchKeys)
  • 【执行策略】预发环境,业务低峰时期执行
  • 【可观测】Redis实例性能监控,业务监控
  • 【风险紧急预案-兜底方案】删除容器实例,kill杀掉异步守护线程,停止执行(可回滚)

spring-boot版本

  • spring-data-redis-2.7.16
  • spring-boot-starter-data-redis-2.7.16

可观测-Redis实例性能监控

  • key模式: “message:queue:*_lock”
  • 清理时间: [2023-12-04 21:15:39.405, 2023-12-05 00:28:24.21]

清理途中,觉得每批10个key有些慢,调整到每批20个key。
【注意】应用重启后,会重新从头开始扫描,存在一段时间未删除keys,需要等一会才能看到删除效果。
不建议中途调整每批key数量!

CPU使用率 (%,平均值)

CPU使用率,增长1~3%

已使用内存总量 (Byte,求和)

已使用内存总量,15.5GB -> 10.22GB

image.png

image.png

image.png

平均时延 (us,平均值)

每批10个key,时延增长2~3微秒

每批20个key,时延增长7~13微秒

image.png

image.png

Keys 监控组 (Counts/s,求和)

del: 200

scan: 375

image.png

image.png

具体实现

scan批量策略,先批量扫描匹配,再批量删除,每批10/20个key,不断地迭代以上操作,直到数据被全部清理。


import java.nio.charset.StandardCharsets;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;import cn.hutool.core.thread.ThreadFactoryBuilder;
import com.spring.boot.redis.example.model.CacheKey;
import com.spring.boot.redis.example.service.CacheService;
import lombok.extern.slf4j.Slf4j;import org.springframework.data.redis.cache.BatchStrategies;
import org.springframework.data.redis.cache.RedisCacheWriter;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.stereotype.Service;
import org.springframework.util.StopWatch;/*** 缓存服务实现** @author guang.yi* @since 2023/7/30*/
@Slf4j
@Service("cacheService")
public class CacheServiceImpl implements CacheService {/*** 并发开关*/private final ConcurrentMap<String, Boolean> concurrentSwitch = new ConcurrentHashMap<>(16);private final ExecutorService executorService = new ThreadPoolExecutor(1, 1, 5L, TimeUnit.MINUTES,new ArrayBlockingQueue<>(1),new ThreadFactoryBuilder().setNamePrefix("cache-clean-").setDaemon(true).build());private final RedisConnectionFactory redisConnectionFactory;public CacheServiceImpl(RedisConnectionFactory redisConnectionFactory) {this.redisConnectionFactory = redisConnectionFactory;log.info("create CacheServiceImpl");}@Overridepublic boolean cleanCache(CacheKey cacheKey) {String keyPattern = cacheKey.getKeyPattern();// 避免多次重复地操作if (concurrentSwitch.putIfAbsent(keyPattern, Boolean.TRUE) == null) {// 异步地执行executorService.execute(() -> this.clean(cacheKey));return true;}return false;}private void clean(CacheKey cacheKey) {log.info("cleanCache start, cacheKey={}", cacheKey);StopWatch stopWatch = new StopWatch("cleanCache");stopWatch.start();this.clean(cacheKey.getCacheName(), cacheKey.getKeyPattern());stopWatch.stop();log.info("cleanCache end, cacheKey={}, stopWatch={}", cacheKey, stopWatch);}/*** 缓存Redis的历史数据清理* <pre>* 【批量策略】在线异步地批量扫描匹配删除,每批10个key* 先SCAN,再批量DEL* 【执行策略】预发环境,业务低峰时期* </pre>** @see org.springframework.data.redis.cache.RedisCacheWriter#clean* @see org.springframework.data.redis.cache.DefaultRedisCacheWriter#clean*/private void clean(String cacheName, String keyPattern) {// 【批量策略】SCAN,每批10个keyRedisCacheWriter redisCacheWriter = RedisCacheWriter.nonLockingRedisCacheWriter(redisConnectionFactory, BatchStrategies.scan(10));// 先SCAN,再批量DELredisCacheWriter.clean(cacheName, keyPattern.getBytes(StandardCharsets.UTF_8));}}

# .A.1. Core Properties
spring:# RedisPropertiesredis:database: 0host: "localhost"port: 6379timeout: 1sconnect-timeout: 300ms
#    client-name: "user-cache"
#    client-type: lettuce
#    sentinel:
#      master: ""
#      nodes: "host:port"
#    cluster:
#      nodes: "host:port"
#      max-redirects: 3
#    jedis:
#      pool:
#        enabled: true
#        max-idle: 8
#        min-idle: 0
#        max-active: 8
#        max-wait: 300ms
#        time-between-eviction-runs: 5mlettuce:shutdown-timeout: 100mspool:enabled: truemax-idle: 8min-idle: 0max-active: 8max-wait: -1time-between-eviction-runs: 5m

开源解决方案有哪些坑?

深入源代码,深究实现细节,趴开裤子看看底细。

源代码做了简化

开源解决方案结论

深入源代码看,scan批量策略的实现方案靠谱keys批量策略存在大坑,不靠谱。

scan批量策略,先批量扫描匹配,再批量删除,每批10/20个key,不断地迭代以上操作,直到数据被全部清理。

RedisCacheWriter#clean

org.springframework.data.redis.cache.RedisCacheWriter#clean

BatchStrategy批量策略,有keysscan两种,分别对应Redis的KEYSSCAN命令。

批量策略默认使用keys,对于真实业务使用场景,一点都不实用。
因为KEYS命令会先收集所有满足匹配条件的keys,等所有都收集好了,再一次性全量DEL删除命令。
对于大量的keys需要删除时,其操作可能夯住线上Redis实例,存在严重影响Redis实例干活的风险。


package org.springframework.data.redis.cache;import java.time.Duration;import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.lang.Nullable;
import org.springframework.util.Assert;/*** {@link RedisCacheWriter} provides low level access to Redis commands ({@code SET, SETNX, GET, EXPIRE,...}) used for* caching. <br />* The {@link RedisCacheWriter} may be shared by multiple cache implementations and is responsible for writing / reading* binary data to / from Redis. The implementation honors potential cache lock flags that might be set.* <p>* The default {@link RedisCacheWriter} implementation can be customized with {@link BatchStrategy} to tune performance* behavior.** @author Christoph Strobl* @author Mark Paluch* @since 2.0*/
public interface RedisCacheWriter extends CacheStatisticsProvider {/*** Create new {@link RedisCacheWriter} without locking behavior.** @param connectionFactory must not be {@literal null}.* @return new instance of {@link DefaultRedisCacheWriter}.*/static RedisCacheWriter nonLockingRedisCacheWriter(RedisConnectionFactory connectionFactory) {return nonLockingRedisCacheWriter(connectionFactory, BatchStrategies.keys());}/*** Create new {@link RedisCacheWriter} without locking behavior.** @param connectionFactory must not be {@literal null}.* @param batchStrategy must not be {@literal null}.* @return new instance of {@link DefaultRedisCacheWriter}.* @since 2.6*/static RedisCacheWriter nonLockingRedisCacheWriter(RedisConnectionFactory connectionFactory,BatchStrategy batchStrategy) {Assert.notNull(connectionFactory, "ConnectionFactory must not be null!");Assert.notNull(batchStrategy, "BatchStrategy must not be null!");return new DefaultRedisCacheWriter(connectionFactory, batchStrategy);}/*** Remove all keys following the given pattern.* 按照给定模式删除所有键。** @param name The cache name must not be {@literal null}.* @param pattern The pattern for the keys to remove. Must not be {@literal null}.*/void clean(String name, byte[] pattern);}

DefaultRedisCacheWriter#clean

源代码做了简化

RedisCacheWriter#clean默认实现是org.springframework.data.redis.cache.DefaultRedisCacheWriter#clean

通过批量策略清理缓存数据batchStrategy.cleanCache(connection, name, pattern)


package org.springframework.data.redis.cache;import java.nio.charset.StandardCharsets;
import java.time.Duration;
import java.util.concurrent.TimeUnit;
import java.util.function.Consumer;
import java.util.function.Function;import org.springframework.dao.PessimisticLockingFailureException;
import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.connection.RedisStringCommands.SetOption;
import org.springframework.data.redis.core.types.Expiration;
import org.springframework.lang.Nullable;
import org.springframework.util.Assert;/*** {@link RedisCacheWriter} implementation capable of reading/writing binary data from/to Redis in {@literal standalone}* and {@literal cluster} environments. Works upon a given {@link RedisConnectionFactory} to obtain the actual* {@link RedisConnection}. <br />* {@link DefaultRedisCacheWriter} can be used in* {@link RedisCacheWriter#lockingRedisCacheWriter(RedisConnectionFactory) locking} or* {@link RedisCacheWriter#nonLockingRedisCacheWriter(RedisConnectionFactory) non-locking} mode. While* {@literal non-locking} aims for maximum performance it may result in overlapping, non atomic, command execution for* operations spanning multiple Redis interactions like {@code putIfAbsent}. The {@literal locking} counterpart prevents* command overlap by setting an explicit lock key and checking against presence of this key which leads to additional* requests and potential command wait times.** @author Christoph Strobl* @author Mark Paluch* @author André Prata* @since 2.0*/
class DefaultRedisCacheWriter implements RedisCacheWriter {private final RedisConnectionFactory connectionFactory;private final Duration sleepTime;private final CacheStatisticsCollector statistics;private final BatchStrategy batchStrategy;/** (non-Javadoc)* @see org.springframework.data.redis.cache.RedisCacheWriter#clean(java.lang.String, byte[])*/@Overridepublic void clean(String name, byte[] pattern) {Assert.notNull(name, "Name must not be null!");Assert.notNull(pattern, "Pattern must not be null!");execute(name, connection -> {boolean wasLocked = false;try {if (isLockingCacheWriter()) {doLock(name, connection);wasLocked = true;}// 通过批量策略清理缓存数据long deleteCount = batchStrategy.cleanCache(connection, name, pattern);while (deleteCount > Integer.MAX_VALUE) {statistics.incDeletesBy(name, Integer.MAX_VALUE);deleteCount -= Integer.MAX_VALUE;}statistics.incDeletesBy(name, (int) deleteCount);} finally {if (wasLocked && isLockingCacheWriter()) {doUnlock(name, connection);}}return "OK";});}}

BatchStrategy批量策略

org.springframework.data.redis.cache.BatchStrategy


package org.springframework.data.redis.cache;import org.springframework.data.redis.connection.RedisConnection;/*** A {@link BatchStrategy} to be used with {@link RedisCacheWriter}.* <p>* Mainly used to clear the cache.* <p>* Predefined strategies using the {@link BatchStrategies#keys() KEYS} or {@link BatchStrategies#scan(int) SCAN}* commands can be found in {@link BatchStrategies}.** @author Mark Paluch* @author Christoph Strobl* @since 2.6*/
public interface BatchStrategy {/*** Remove all keys following the given pattern.** @param connection the connection to use. Must not be {@literal null}.* @param name The cache name. Must not be {@literal null}.* @param pattern The pattern for the keys to remove. Must not be {@literal null}.* @return number of removed keys.*/long cleanCache(RedisConnection connection, String name, byte[] pattern);}

BatchStrategies批量策略实现

org.springframework.data.redis.cache.BatchStrategies

BatchStrategy批量策略,有keysscan两种,分别对应Redis的KEYSSCAN命令。

scan批量策略,先批量扫描匹配,再批量删除,每批10/20个key,不断地迭代以上操作,直到数据被全部清理。

keys批量策略,对于真实业务使用场景,一点都不实用。
因为KEYS命令会先收集所有满足匹配条件的keys,等所有都收集好了,再一次性全量DEL删除命令。
对于大量的keys需要删除时,其操作可能夯住线上Redis实例,存在严重影响Redis实例干活的风险。


package org.springframework.data.redis.cache;import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.Optional;import org.springframework.data.redis.connection.RedisConnection;
import org.springframework.data.redis.core.Cursor;
import org.springframework.data.redis.core.ScanOptions;
import org.springframework.util.Assert;/*** A collection of predefined {@link BatchStrategy} implementations using {@code KEYS} or {@code SCAN} command.** @author Mark Paluch* @author Christoph Strobl* @since 2.6*/
public abstract class BatchStrategies {private BatchStrategies() {// can't touch this - oh-oh oh oh oh-oh-oh}/*** A {@link BatchStrategy} using a single {@code KEYS} and {@code DEL} command to remove all matching keys.* {@code KEYS} scans the entire keyspace of the Redis database and can block the Redis worker thread for a long time* on large keyspaces.* <p>* {@code KEYS} is supported for standalone and clustered (sharded) Redis operation modes.** @return batching strategy using {@code KEYS}.*/public static BatchStrategy keys() {return Keys.INSTANCE;}/*** A {@link BatchStrategy} using a {@code SCAN} cursors and potentially multiple {@code DEL} commands to remove all* matching keys. This strategy allows a configurable batch size to optimize for scan batching.* <p>* Note that using the {@code SCAN} strategy might be not supported on all drivers and Redis operation modes.** @return batching strategy using {@code SCAN}.*/public static BatchStrategy scan(int batchSize) {Assert.isTrue(batchSize > 0, "Batch size must be greater than zero!");return new Scan(batchSize);}/*** {@link BatchStrategy} using {@code KEYS}.*/static class Keys implements BatchStrategy {static Keys INSTANCE = new Keys();@Overridepublic long cleanCache(RedisConnection connection, String name, byte[] pattern) {// `KEYS`命令会先收集所有满足匹配条件的keys,等所有都收集好了,再一次性全量`DEL`删除命令byte[][] keys = Optional.ofNullable(connection.keys(pattern)).orElse(Collections.emptySet()).toArray(new byte[0][]);if (keys.length > 0) {connection.del(keys);}return keys.length;}}/*** {@link BatchStrategy} using {@code SCAN}.*/static class Scan implements BatchStrategy {private final int batchSize;Scan(int batchSize) {this.batchSize = batchSize;}@Overridepublic long cleanCache(RedisConnection connection, String name, byte[] pattern) {// 批量扫描匹配删除,每批10/20个key// 先SCAN匹配,再批量DEL// SCAN(keyPattern, match, batchSize) + DEL(allMatchKeys, batchSize)Cursor<byte[]> cursor = connection.scan(ScanOptions.scanOptions().count(batchSize).match(pattern).build());long count = 0;PartitionIterator<byte[]> partitions = new PartitionIterator<>(cursor, batchSize);while (partitions.hasNext()) {List<byte[]> keys = partitions.next();count += keys.size();if (keys.size() > 0) {connection.del(keys.toArray(new byte[0][]));}}return count;}}/*** Utility to split and buffer outcome from a {@link Iterator} into {@link List lists} of {@code T} with a maximum* chunks {@code size}.** @param <T>*/static class PartitionIterator<T> implements Iterator<List<T>> {private final Iterator<T> iterator;private final int size;PartitionIterator(Iterator<T> iterator, int size) {this.iterator = iterator;this.size = size;}@Overridepublic boolean hasNext() {return iterator.hasNext();}@Overridepublic List<T> next() {if (!hasNext()) {throw new NoSuchElementException();}List<T> list = new ArrayList<>(size);while (list.size() < size && iterator.hasNext()) {list.add(iterator.next());}return list;}}
}

5.参考引用

  • Spring Data Redis / Redis / Redis Cache
  • redis-spring-boot-starter-example

献给杭州2023年的第一场雪❄️

2023.12.18

相关文章:

使用RedisCacheWriter#clean在线异步地批量扫描匹配删除缓存数据-spring-data-redis

1.背景 生产环境&#xff0c;某云的某个业务Redis实例&#xff0c;触发内存使用率&#xff0c;连续 3 次 平均值 > 85 %告警。 运维同学告知&#xff0c;看看需要怎么优化或者升级配置&#xff1f;分享了其实例RDB的内存剖析链接。 通过内存剖析详情发现&#xff0c;存在某…...

机器视觉:AI赋能缺陷检测,铸就芯片产品的大算力与高能效

导言&#xff1a;近年来&#xff0c;国内芯片行业快速发展&#xff0c;市场对芯片需求的不断增大&#xff0c;芯片的缺陷检测压力也越来越大。芯片产品在生产制造过程中&#xff0c;需要经历数道工序&#xff0c;每个生产环节的材料、环境、工艺参数等都有可能造成产品缺陷。不…...

(9)Linux Git的介绍以及缓冲区

&#x1f4ad; 前言 本章我们先对缓冲区的概念进行一个详细的探究&#xff0c;之后会带着大家一步步去编写一个简陋的 "进度条" 小程序。最后我们来介绍一下 Git&#xff0c;着重讲解一下 Git 三板斧&#xff0c;一般只要掌握三板斧就基本够用了。 缓冲区&#xff…...

华为云之ECS云产品快速入门

华为云之ECS云产品快速入门 一、ECS云服务器介绍二、本次实践目标三、创建虚拟私有云VPC1.虚拟私有云VPC介绍2.进入虚拟私有云VPC管理页面3.创建虚拟私有云4.查看创建的VPC 四、创建弹性云服务器ECS——Linux1.进入ECS购买界面2.创建弹性云服务器(Linux)——基础配置步骤3.创建…...

tcp 的限制 (TCP_WRAPPERS)

#江南的江 #每日鸡汤&#xff1a;青春是打开了就合不上的书&#xff0c;人生是踏上了就回不了头的路&#xff0c;爱情是扔出了就收不回的赌注。 #初心和目标&#xff1a;拿到高级网络工程师 TCP_WRAPPERs Tcp_wrappers 对于七层模型中是位于第四层的安全工具&#xff0c;他…...

如何保证架构的质量

1. 如何保证架构的质量: ①. 稳定性、健壮性(1). 系统稳定性: ①. 定义:a. 当一个实际的系统处于一个平衡的状态时,如果受到外来作用的影响时,系统经过一个过渡过程仍然能够回到原来的平衡状态.b. 可以说这个系统是稳定的,否则系统不稳定c. 如一根绳子绑着小球,处于垂直状态,…...

JavaWeb笔记之前端开发JavaScript

一、引言 1.1 简介 JavaScript一种解释性脚本语言&#xff0c;是一种动态类型、弱类型、基于原型继承的语言&#xff0c;内置支持类型。 它的解释器被称为JavaScript引擎&#xff0c;作为浏览器的一部分&#xff0c;广泛用于客户端的脚本语言&#xff0c;用来给HTML网页增加…...

SCAU:18063 圈中的游戏

18063 圈中的游戏 时间限制:1000MS 代码长度限制:10KB 提交次数:0 通过次数:0 题型: 编程题 语言: G;GCC;VC Description 有n个人围成一圈&#xff0c;从第1个人开始报数1、2、3&#xff0c;每报到3的人退出圈子。编程使用链表找出最后留下的人。输入格式 输入一个数n&a…...

.NET Core中鉴权 Authentication Authorization

Authentication: 鉴定身份信息&#xff0c;例如用户有没有登录&#xff0c;用户基本信息 Authorization: 判定用户有没有权限 使用框架提供的Cookie鉴权方式 1.首先在服务容器注入鉴权服务和Cookie服务支持 services.AddAuthentication(options > {options.DefaultAuthe…...

PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)

PyTorch深度学习实战&#xff08;26&#xff09;——卷积自编码器 0. 前言1. 卷积自编码器2. 使用 t-SNE 对相似图像进行分组小结系列链接 0. 前言 我们已经学习了自编码器 (AutoEncoder) 的原理&#xff0c;并使用 PyTorch 搭建了全连接自编码器&#xff0c;但我们使用的数据…...

Milvus实战:构建QA系统及推荐系统

Milvus简介 全民AI的时代已经在趋势之中&#xff0c;各类应用层出不穷&#xff0c;而想要构建一个完善的AI应用/系统&#xff0c;底层存储是不可缺少的一个组件。 与传统数据库或大数据存储不同的是&#xff0c;这种场景下则需要选择向量数据库&#xff0c;是专门用来存储和查…...

使用Docker部署Nexus Maven私有仓库并结合Cpolar实现远程访问

文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定Nexus公网地址7. 固定地址访问Nexus Nexus是一个仓库管理工具&#xff0c;用于管理和组织软件构建过程中的依赖项和构件。它与Maven密切相关&#xff0c;可…...

GEE-Sentinel-2月度时间序列数据合成并导出

系列文章目录 第一章&#xff1a;时间序列数据合成 文章目录 系列文章目录前言时间序列数据合成总结 前言 利用每个月可获取植被指数数据取均值&#xff0c;合成月度平均植被指数&#xff0c;然后将12个月中的数据合成一个12波段的时间数据合成数据。 时间序列数据合成 代码…...

【深度学习】语言模型与注意力机制以及Bert实战指引之二

文章目录 前言 前言 这一篇是bert实战的完结篇&#xff0c;准备中。...

计算机网络 网络层下 | IPv6 路由选择协议,P多播,虚拟专用网络VPN,MPLS多协议标签

文章目录 5 IPv65.1 组成5.2 IPv6地址5.3 从IPv4向IPv6过渡5.3.1 双协议栈5.3.2 隧道技术 6 因特网的路由选择协议6.1 内部网关协议RIP6.2 内部网关协议 OSPF基本特点 6.3 外部网关协议 BGP6.3.1 路由选择 6.4 路由器组成6.4.1 基本了解6.4.2 结构 7 IP多播7.1 硬件多播7.2 IP多…...

【MATLAB第83期】基于MATLAB的LSTM代理模型的SOBOL全局敏感性运用

【MATLAB第83期】基于MATLAB的LSTM代理模型的SOBOL全局敏感性运用 引言 在前面几期&#xff0c;介绍了敏感性分析法&#xff0c;本期来介绍lstm作为代理模型的sobol全局敏感性分析模型。 【MATLAB第31期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理回归问题MATLAB代…...

求奇数的和 C语言xdoj147

题目描述&#xff1a;计算给定一组整数中奇数的和&#xff0c;直到遇到0时结束。 输入格式&#xff1a;共一行&#xff0c;输入一组整数&#xff0c;以空格分隔 输出格式&#xff1a;输出一个整数 示例&#xff1a; 输入&#xff1a;1 2 3 4 5 0 6 7 输出&#xff1a;9 #inclu…...

全链路压力测试:解析其主要特点

随着信息技术的飞速发展和云计算的普及&#xff0c;全链路压力测试作为一种关键的质量保障手段&#xff0c;在软件开发和系统部署中扮演着至关重要的角色。全链路压力测试以模拟真实生产环境的压力和负载&#xff0c;对整个业务流程进行全面测试&#xff0c;具有以下主要特点&a…...

算法基础之约数个数

约数个数 核心思想&#xff1a; 用哈希表存每个质因数的指数 然后套公式 #include <iostream>#include <algorithm>#include <unordered_map>#include <vector>using namespace std;const int N 110 , mod 1e9 7;typedef long long LL; //long l…...

【ECharts】折线图

文章目录 折线图1折线图2折线图3示例 参考&#xff1a; Echarts官网 Echarts 配置项 折线图1 带X轴、Y轴标记线&#xff0c;其中X轴是’category’ 类目轴&#xff0c;适用于离散的类目数据。 let myChart echarts.init(this.$refs.line_chart2); let yList [400, 500, 6…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...