图论 | 网络流的基本概念
文章目录
- 流网路
- 残留网络
- 增广路径
- 割
- 最大流最小割定理
- 最大流
- Edmonds-Karp 算法
- 算法步骤
- 程序代码
- 时间复杂度
流网路
流网络: G = ( V , E ) G = (V, E) G=(V,E)
- 有向图,不考虑反向边
- s:源点
- t:汇点
- c ( u , v ) c(u, v) c(u,v):边的最大容量
- 可行流 f f f
- 容量限制: 0 ≤ f ( u , v ) ≤ c ( u , v ) 0 \leq f(u, v) \leq c(u, v) 0≤f(u,v)≤c(u,v)
- 流量守恒:除了源点和汇点,所有点满足 流入 = 流出 流入 = 流出 流入=流出
- ∣ f ∣ |f| ∣f∣:可行流的流量,即从源点流向汇点的速率。一种通用的解释是 从源点流出的流量 − 流入源点的流量 从源点流出的流量 - 流入源点的流量 从源点流出的流量−流入源点的流量
- 最大流:最大可行流
残留网络
残留网络定义:一个可行流流网络 f f f 对应一个残留网络 G f G_f Gf
- 点集:与原图的点集一样 V f = V V_f = V Vf=V
- 边集:不仅包含原图的边,同时包含所有边的方向边,即 E f = E 和 E 中的所有反向边 E_f = E 和 E中的所有反向边 Ef=E和E中的所有反向边
- 边的容量: c f ( u , v ) c_f(u, v) cf(u,v)
- 原图中的边:剩下的容量,即 c ( u , v ) − f ( u , v ) c(u, v) - f(u, v) c(u,v)−f(u,v)
- 反向边:可以退回的流量,即 f ( v , u ) f(v, u) f(v,u)
重要结论:原网络的可行流 f f f 加上可行流对应的残留网络 G f G_f Gf,也是一个可行流
- 对应边相加:若方向同则相加;若反向反则相减
- 结论: ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| ∣f+f′∣=∣f∣+∣f′∣
- 进一步,若残留网络没有可行流,那么原网络的可行流就一定是最大流
增广路径
在残留网络里,如果沿着容量大于 0 的边走,能走到汇点,则这条路径叫做增广路径
- 若存在一个增广路径,根据 ∣ f + f ′ ∣ = ∣ f ∣ + ∣ f ′ ∣ |f + f'| = |f| + |f'| ∣f+f′∣=∣f∣+∣f′∣,原来的可行流一定不是最大流
- 若不存在增广路径,我们可以得出当前可行流就是最大流
割
将点集 V 分成 S 和 T 两个子集
- 分割要满足 S ∪ T = V , S ∩ T = ∅ S ∪ T = V, S ∩ T = \emptyset S∪T=V,S∩T=∅
- 点集不一定连通
割的容量: c ( S , T ) = ∑ u ∈ S ∑ v ∈ T c ( u , v ) c(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} c(u, v) c(S,T)=∑u∈S∑v∈Tc(u,v)
- 最小割:最小割的容量
- 割的容量不考虑反向边
割的流量: f ( S , T ) = ∑ u ∈ S ∑ v ∈ T f ( u , v ) − ∑ u ∈ T ∑ v ∈ S f ( u , v ) f(S, T) = \sum_{u ∈ S} \sum_{v ∈ T} f(u, v) - \sum_{u ∈ T} \sum_{v ∈ S} f(u, v) f(S,T)=∑u∈S∑v∈Tf(u,v)−∑u∈T∑v∈Sf(u,v)
- 流过去的流量减去流过来的流量
- 割的流量考虑反向边
重要性质:
-
对于任意一个割,割的流量一定小于等于割的容量,即 f ( S , T ) ≤ c ( S , T ) f(S, T) \leq c(S, T) f(S,T)≤c(S,T)
-
割的流量等于原流网络的流量,即 f ( S , T ) = ∣ f ∣ f(S,T) = |f| f(S,T)=∣f∣
-
f ( X , Y ) = − f ( Y , X ) f(X, Y) = -f(Y, X) f(X,Y)=−f(Y,X)
-
f ( Z , X ∪ Y ) = f ( Z , X ) + f ( Z , Y ) f(Z, X ∪ Y) = f(Z, X) + f(Z, Y) f(Z,X∪Y)=f(Z,X)+f(Z,Y)
-
f ( X ∪ Y , Z ) = f ( X , Z ) + f ( Y , Z ) f(X ∪ Y, Z) = f(X, Z) + f(Y, Z) f(X∪Y,Z)=f(X,Z)+f(Y,Z)
最大流最小割定理
以下三个条件是等价的
- 可行流 f f f 是最大流
- 可行流 f f f 的残留网络中不存在增广路
- 存在某个割 [ S , T ] [S, T] [S,T], ∣ f ∣ = c ( S , T ) |f| = c(S, T) ∣f∣=c(S,T)
最大流
Edmonds-Karp 算法
算法步骤
维护流网络的残留网络,不断进行以下流程:
- 找一条增广路 f ′ f' f′:可以用 BFS 进行搜索
- 更新残留网络 G f → G f + f ′ G_f → G_{f + f'} Gf→Gf+f′
程序代码
#include <iostream>
#include <algorithm>
#include <cstring>using namespace std;const int N = 1010, M = 20020, INF = 1e8;// 邻接表存储残留网络
// 正向边和反向边成对存在,正向边的下标异或上1得到方向边的下标
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx; // f表示容量
int q[N], d[N], pre[N];
bool st[N]; // 避免重复搜索void add(int a, int b, int c)
{// 正向边 e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;// 反向边,初始容量为0e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}// bfs找增广路
bool bfs()
{int hh = 0, tt = 0;memset(st, false, sizeof(st));q[0] = S, st[S] = true, d[S] = INF;while(hh <= tt) {// 从队列中弹出一个元素进行BFSint t = q[hh++];for(int i = h[t]; ~i; i = ne[i]) {// 节点t的临接边i的下一节点verint ver = e[i];// 没遍历过且边i的容量不为0if( !st[ver] && f[i] ) {st[ver] = true;// 流到节点ver的流量为流到t的流量和边i容量的最小值d[ver] = min(d[t], f[i]);// 记录节点ver前驱边的编号pre[ver] = i;if(ver == T) return true;// ver入队q[++tt] = ver;}}}return false;
}// EK 算法
int EK()
{int r = 0;while( bfs() ) {// 加上增广路的流量r += d[T];// 更新残留网络for(int i = T; i != S; i = e[pre[i] ^ 1]) {// 正向边更新f[pre[i]] -= d[T];// 反向边更新f[pre[i] ^ 1] += d[T];}}return r;
}int main()
{// 点数、边数、源点、汇点cin >> n >> m >> S >> T;// 初始化邻接表memset(h, -1, sizeof(h));while( m-- ) {int a, b, c;// 边ab的容量为ccin >> a >> b >> c;add(a, b, c);}cout << EK() << endl;return 0;
}
时间复杂度
O ( V E 2 ) O(VE^2) O(VE2)
相关文章:
图论 | 网络流的基本概念
文章目录 流网路残留网络增广路径割最大流最小割定理最大流Edmonds-Karp 算法算法步骤程序代码时间复杂度 流网路 流网络: G ( V , E ) G (V, E) G(V,E) 有向图,不考虑反向边s:源点t:汇点 c ( u , v ) c(u, v) c(u,v)ÿ…...
【音视频 | AAC】AAC音频编码详解
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...
redis基本用法学习(C#调用NRedisStack操作redis)
redis官网文档中推荐C#中使用NRedisStack包连接并操作redis,本文学习C#调用NRedisStack操作redis的基本方式。 新建Winform项目,在Nuget包管理器中搜索并安装NRedisStack包,如下图所示: 主要调用StackExchange.Redis命名空间下…...
[CVPR 2023:3D Gaussian Splatting:实时的神经场渲染]
文章目录 前言小结 原文地址:https://blog.csdn.net/qq_45752541/article/details/132854115 前言 mesh 和点是最常见的3D场景表示,因为它们是显式的,非常适合于快速的基于GPU/CUDA的栅格化。相比之下,最近的神经辐射场…...
【SpringBoot快速入门】(4)SpringBoot项目案例代码示例
目录 1 创建工程3 配置文件4 静态资源 之前我们已经学习的Spring、SpringMVC、Mabatis、Maven,详细讲解了Spring、SpringMVC、Mabatis整合SSM的方案和案例,上一节我们学习了SpringBoot的开发步骤、工程构建方法以及工程的快速启动,从这一节开…...
Linux服务器 部署飞书信息发送服务
项目介绍: 飞书信息发送服务是指将飞书信息发送服务部署到一个Linux服务器上。飞书是一款企业级的即时通讯和协作工具,支持发送消息给飞书的功能。通过部署飞书信息发送服务,可以方便内网发送信息给外网飞书。 项目代码结构展示: …...
用C#也能做机器学习?
前言✨ 说到机器学习,大家可能都不陌生,但是用C#来做机器学习,可能很多人还第一次听说。其实在C#中基于ML.NET也是可以做机器学习的,这种方式比较适合.NET程序员在项目中集成机器学习模型,不太适合专门学习机器学习&a…...
Python PDF格式转PPT格式
要将PDF文件转换为PPT,我实在python3.9 环境下转成功的,python3.11不行。 需要 pip install PyMuPDF代码说话 # -*- coding: utf-8 -*-""" author: 赫凯 software: PyCharm file: xxx.py time: 2023/12/21 11:20 """im…...
搭建知识付费平台?明理信息科技为你提供全程解决方案
明理信息科技saas知识付费平台 在当今数字化时代,知识付费已经成为一种趋势,越来越多的人愿意为有价值的知识付费。然而,公共知识付费平台虽然内容丰富,但难以满足个人或企业个性化的需求和品牌打造。同时,开发和维护…...
漫谈UNIX、Linux、UNIX-Like
漫谈UNIX、Linux、UNIX-Like 使用了这么多年Redhat、Ubuntu等Linux、Windows、Solaris操作系统,你是否对UNIX、Unix-Like(类UNIX)还是不太清楚?我以前一直认为Unix-Like就等于Linux。其实,由UNIX派生出来而没有取得UN…...
Netty Review - Netty与Protostuff:打造高效的网络通信
文章目录 概念PrePomServer & ClientProtostuffUtil 解读测试小结 概念 Pre 每日一博 - Protobuf vs. Protostuff:性能、易用性和适用场景分析 Pom <dependency><groupId>com.dyuproject.protostuff</groupId><artifactId>protostuff-…...
在ClickHouse数据库中启用预测功能
在这篇博文中,我们将介绍如何将机器学习支持的预测功能与 ClickHouse 数据库集成。ClickHouse 是一个快速、开源、面向列的 SQL 数据库,对于数据分析和实时分析非常有用。该项目由 ClickHouse, Inc. 维护和支持。我们将探索它在需要数据准备以…...
目标检测YOLO实战应用案例100讲-树上果实识别与跟踪计数(续)
目录 3.2 损失函数优化 3.3 实验过程 3.3.1 果实图像采集 3.3.2 数据扩增...
Docker 文件和卷 权限拒绝
一 创作背景 再复制Docker影像文件或访问Docker容器内已安装卷上的文件时我们常常会遇到:“权限被拒绝”的错误,在此,您将了解到为什么会出现“权限被拒绝”的错误以及如何解决这个问题。 二 目的 在深入探讨 Docker 容器中的 Permission De…...
Appium Server 启动失败常见原因及解决办法
Error: listen EADDRINUSE: address already in use 0.0.0.0:4723 如下图: 错误原因:Appium 默认的4723端口被占用 解决办法: 出现该提示,有可能是 Appium Server 已启动,关闭已经启动的 Appium Server 即可。472…...
将Abp默认事件总线改造为分布式事件总线
文章目录 原理创建分布式事件总线实现自动订阅和事件转发 使用启动Redis服务配置传递Abp默认事件传递自定义事件 项目地址 原理 本地事件总线是通过Ioc容器来实现的。 IEventBus接口定义了事件总线的基本功能,如注册事件、取消注册事件、触发事件等。 Abp.Events…...
Jupyter Notebook修改默认工作目录
1、参考修改Jupyter Notebook的默认工作目录_jupyter文件路径-CSDN博客修改配置文件 2.在上述博客内容的基础上,这里不是删除【%USERPROFILE%】而是把这个地方替换为所要设置的工作目录路径, 3.【起始位置】也可以更改为所要设置的工作目录路径&#x…...
高校/企业如何去做数据挖掘呢?
随着近年来人工智能及大数据、云计算进入爆发时期,依托三者进行的数据分析、数据挖掘服务已逐渐成为各行业进行产业升级的载体,缓慢渗透进我们的工作和生活,成为新时代升级版的智能“大案牍术”。 那么对于多数企业来说,如何做数据…...
数据仓库-数据治理小厂实践
一、简介 数据治理贯穿数仓中数据的整个生命周期,从数据的产生、加载、清洗、计算,再到数据展示、应用,每个阶段都需要对数据进行治理,像有些比较大的企业都是有自己的数据治理平台或者会开发一些便捷的平台,对于没有平…...
【C++多线程编程】(五)之 线程生命周期管理join() 与 detach()
在C中,std::thread 类用于创建和管理线程。std::thread 提供了两种主要的方法来控制线程的生命周期:join 和 detach。 detach方式,启动的线程自主在后台运行,当前的代码继续往下执行,不等待新线程结束。join方式&…...
金融信贷场景的风险“要素”与主要“风险点”
目录 要素一:贷款对象 风险点1:为不具备主体资格或主体资格有瑕疵的借款人发放贷款 风险表现: 防控措施: 风险点2:向国家限控行业发放贷款 风险表现: 防控措施: 风险点3:受理不符合准入条件的客户申请 风险表现: 防控措施: 要素二:金额 风险点4:过渡授…...
ubuntu下docker安装,配置python运行环境
参考自: 1.最详细ubuntu安装docker教程 2.使用docker搭建python环境 首先假设已经安装了docker,卸载原来的docker 在命令行中运行: sudo apt-get updatesudo apt-get remove docker docker-engine docker.io containerd runc 安装docker依赖 apt-get…...
在Docker中安装kafka遇到问题记录
命令含义解答: 在docker安装kafka的时候,启动kafka的时候会执行下面语句: docker run -d --log-driver json-file --log-opt max-size100m --log-opt max-file2 --name kafka -p 9092:9092 -e KAFKA_BROKER_ID0 -e KAFKA_ZOOKEEPER_CONNEC…...
aws-waf-cdn 基于规则组的永黑解决方案
1. 新建waf 规则组 2. 为规则组添加规则 根据需求创建不同的规则 3. waf中附加规则组 (此时规则组所有规则都会附加到waf中,但是不会永黑) 此刻,可以选择测试下规则是否生效,测试前确认保护资源绑定无误 4. 创建堆…...
如何实现免费无限流量云同步笔记软件Obsidian?
目录 前言 如何实现免费无限流量云同步笔记软件Obsidian? 一、简介 软件特色演示: 二、使用免费群晖虚拟机搭建群晖Synology Drive服务,实现局域网同步 1 安装并设置Synology Drive套件 2 局域网内同步文件测试 三、内网穿透群晖Synol…...
GPTs | Actions应用案例
上篇文章说道,如何使用创建的GPTs通过API接口去获取外部的一些信息,然后把获取的外部信息返回给ChatGPT让它加工出来,回答你的问题,今天我们就来做一个通俗易懂的小案例,让大家来初步了解一下它的使用法! …...
Python Opencv实践 - 手势音量控制
本文基于前面的手部跟踪功能做一个手势音量控制功能,代码用到了前面手部跟踪封装的HandDetector.这篇文章在这里: Python Opencv实践 - 手部跟踪-CSDN博客文章浏览阅读626次,点赞11次,收藏7次。使用mediapipe库做手部的实时跟踪&…...
关于Selenium的网页对象单元测试的设计模式
写在前面:经过了实践总结一下经验,心得进行一个分享。 首先driver是可以单独抽出来的,变成一个driver函数放在driver.py。 from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver…...
基于多反应堆的高并发服务器【C/C++/Reactor】(上)
(一)初始化服务器端用于监听的套接字 Server.h #pragma once // 初始化监听的套接字 int initListenFd(unsigned short port); Server.c int initListenFd(unsigned short port) {// 1.创建监听的fdint lfd socket(AF_INET, SOCK_STREAM, 0);if(lf…...
腾讯云debian服务器的连接与初始化
目录 1. 远程连接2. 软件下载3. 设置开机自启动 1. 远程连接 腾讯云给的服务器在安装好系统之后,只需要在防火墙里面添加一个白名单(ip 或者域名)就能访问了。 浏览器打开https://www.ipip.net/,在左下角找到自己所用的WIFI的公…...
重庆企业网站制作哪家好/淘宝怎么优化关键词排名
SPI同步串行通讯 UART回顾 在一个不归0码NRZ下面用一次下降沿产一个起始位,从起始位开始对齐,依次发送起始位,8个数据位,可能有的校验位乃至停止位。在10-11个bit完成一个数据帧直到归到逻辑1到下一次1-0跳变启动下一个帧。 SPI …...
2022年时事新闻摘抄/seo可以从哪些方面优化
所谓程序锁就是当用户启动某个程序的时候需要用户校验,如果校验成功,则进入应用程序. 也可以用于功能锁,也就是当用户使用程序的某个时,进行进行校验如果校验成功则进入该功能. 效果如下图所示: 该项目是google的开源项目. 下载地址:http://download.csdn.net/detail/johnny…...
wordpress模板底部版权怎么修改/福州关键词优化平台
实用教程!使用YOLOv3训练自己数据的目标检测 52CV君 我爱计算机视觉 今天 点击我爱计算机视觉标星,更快获取CVML新技术 YOLOv3是当前计算机视觉中最为流行的实时目标检测算法之一。 昨天LearnOpenCV网站博主又发福利,post了一个清晰明了的教…...
网站代码输入完成之后要怎么做/爱用建站
导读:本文是matlab类有关专科毕业论文范文与MATLAB方面专科毕业论文范文.周子健张飞【摘 要】论文前半部分根据相关理念和相关概念设计出了直流调压调速控制系统的各个环节之间的联系以及各个部分的原部件.随后对这些原部件的参数进行了精确的计算,设计出了各个部分应该采用的相…...
无锡新吴区建设局网站/百度公司名称
Qt 实现文件校验码生成器(内附源码) 该软件是基于 CertUtil 的一个文件文件校验码生成,旨在提高下载程序的一个安全系数,防止黑客攻击网站后,将携带病毒的程序放在下载链接上,当用户使用程序时,…...
wordpress怎么做两个语言网站/新闻今日头条最新消息
Velocity是一种Java模版引擎技术,该项目由Apache提出,由另外一种引擎技术Webmacro引深而来。那什么是官方的Velocity定义呢?Apache对它的定义是:一种基于Java的模板引擎,但允许任何人使用简单而强大的模板语言来引用定…...